

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm604t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-1:	CPU CORE REGISTER MAP	(CONTINUED)	1
------------	-----------------------	-------------	---

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL1	DL2	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048							XMO	DSRT<15:0	>							_	0000
XMODEND	004A							XMO	DEND<15:0	>							_	0001
YMODSRT	004C							YMO	DSRT<15:0	>							_	0000
YMODEND	004E							YMO	DEND<15:0	>							—	0001
XBREV	0050	BREN							XBF	REV<14:0>								0000
DISICNT	0052	_	_							DISICNT<	13:0>							0000
TBLPAG	0054	_	_	_	_	_	_	_	_				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	:15:0>								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PWM GENERATOR 6 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON6	0CC0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON6	0CC2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON6	0CC4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC6	0CC6								PDC6	<15:0>								0000
PHASE6	0CC8								PHASE	6<15:0>								0000
DTR6	0CCA	_	_							DTR6	<13:0>							0000
ALTDTR6	00000	_	_							ALTDTR	6<13:0>							0000
SDC6	0CCE								SDC6	<15:0>								0000
SPHASE6	0CD0								SPHASE	6<15:0>								0000
TRIG6	0CD2								TRGCM	P<15:0>								0000
TRGCON6	0CD4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	—	_	_	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP6	0CD8								PWMCAF	P6<15:0>				•				0000
LEBCON6	0CDA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY6	0CDC	_	-	_	_				•	•	LEB<	11:0>		•	•			0000
AUXCON6	0CDE	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
Logondu			1			wn in hovede												

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: UART3 AND UART4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	_	_	_	_	_	_	_				UART3 T	ransmit Reg	gister				xxxx
U3RXREG	0256	_	_	_	_	_	_	_				UART3 F	Receive Reg	gister				0000
U3BRG	0258							Baud I	Rate Gene	erator Presca	ler							0000
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	_	_	_	_	_	_	_				UART4 T	ransmit Reg	gister				xxxx
U4RXREG	02B6	_	_	_	_	_	_	_				UART4 F	Receive Reg	gister				0000
U4BRG	02B8							Baud I	Rate Gene	erator Presca	ler							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SPI1, SPI2 AND SPI3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	—	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPI1 Tran	smit and Re	ceive Buffe	er Register							0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	—	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tran	smit and Re	ceive Buffe	er Register							0000
SPI3STAT	02A0	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	02A2	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	02A4	FRMEN	SPIFSD	FRMPOL	_	—	—	_	_	_	_	_	_	—	_	FRMDLY	SPIBEN	0000
SPI3BUF	02A8							SPI3 Tran	smit and Re	ceive Buffe	er Register							0000

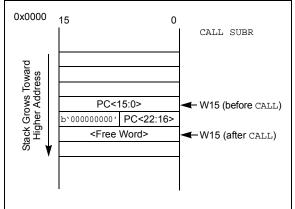
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGM3XX/6XX/7XX devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.


The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-13 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-13. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain the Software Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a 'C' development environment

FIGURE 4-13: C.

CALL STACK FRAME

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-66 form the basis of the addressing modes optimized to support the specific features of the individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Flash Programming" (DS70609), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation, over the entire VDD range.

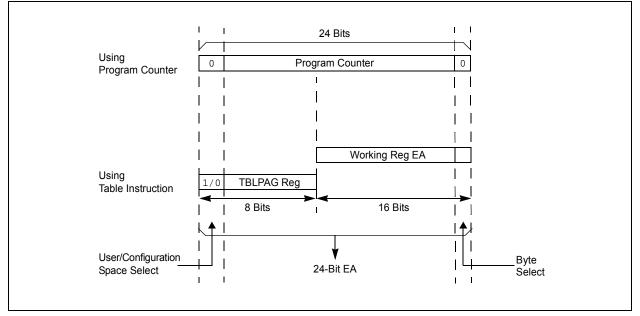
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGM3XX/6XX/7XX device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and

Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data as a double program memory word, a row of 64 instructions (192 bytes), and erase program memory in blocks of 512 instruction words (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

The Flash memory read and the double-word programming operations make use of the TBLRD and TBLWT instructions, respectively. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
			—	ILR3	ILR2	ILR1	ILR0
bit 15		1					bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7	VECINOMIC	VECINONIS	VECINONIA	VECINONIS	VECINONIZ	VECNOWI	bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 11-8	1111 = CPU • • • • •	w CPU Interrup Interrupt Priorit Interrupt Priorit	y Level is 15 y Level is 1				
bit 7-0	VECNUM<7:	Interrupt Priorit 0>: Vector Num 255, Reserved	ber of Pendin	g Interrupt bits			
	00001000 = 00000111 = 00000110 = 00000101 = 00000100 = 00000011 = 00000010 =	9, IC1 – Input 0 8, INT0 – Exter 7, Reserved; do 6, Generic soft 5, DMA Contro 4, Math error tr 3, Stack error tr 2, Generic hard 1, Address erro	nal Interrupt C o not use error trap ller error trap ap rap d trap or trap)			

REGISTER 8-5: DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	—	_	_	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	23:16>			
bit 7							bit 0

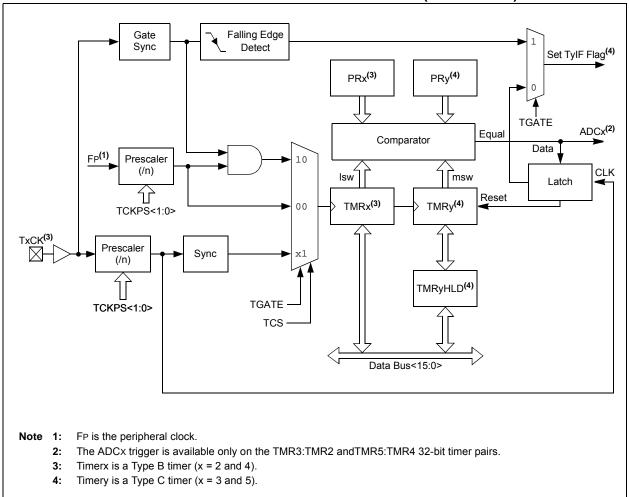
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: DMA Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL X START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-		STB	<15:8>	-	-	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown


bit 15-0 **STB<15:0>:** DMA Secondary Start Address bits (source or destination)

REGISTER 11-24: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15		-				•	bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SS3R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-7	Unimplemen	nted: Read as '	0'				
bit 6-0		Assign SPI3 Sla I-2 for input pin		. ,	e Corresponding	g RPn/RPIn Piı	n bits
	1111111 = I r	nput tied to RP1	124				
	•						

• • 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

16.2 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2(1)	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled
	0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending
	0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	1 = Active Period register is updated immediately
	0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low) 0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
	0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	1 = External synchronization of primary time base is enabled
	0 = External synchronization of primary time base is disabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user
	application must program the Period register with a value that is slightly larger than the expected period of
0	the external synchronization input signal. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection
2:	See Section ZD.U. Ferioneral Irigger Generator (FIG) Woodule" for information on this selection

2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode
		 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		<u>When Set to '⊥':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		<u>When Set to 'o':</u> If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened. If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWMx generator uses the secondary master time base for synchronization and as the clock source for the PWMx generation logic (if secondary time base is available) 0 = PWMx generator uses the primary master time base for synchronization and as the clock source for the PWMx generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
bit 1		0 = Edge-Aligned mode is enabled XPRES: External PWMx Reset Control bit ⁽⁵⁾
DILI		 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
bit 0		 0 = External pins do not affect the PWMx time base IUE: Immediate Update Enable bit⁽²⁾
DILU		 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

dsPIC33EPXXXGM3XX/6XX/7XX

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x					
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA					
bit 7		4				~	bit C					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	QCAPEN: Q	Elx Position Co	ounter Input Ca	apture Enable	bit							
	1 = Index ma	atch event of ho	ome input trigg	ers a position	capture event							
			•		position capture	e event						
bit 14		EAx/QEBx/IND	-	ital Filter Enal	ole bit							
		digital filter is a digital filter is a		ssed)								
bit 13-11		-		-	Filter Clock Divid	le Select hits						
		QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits 111 = 1:128 clock divide										
	110 = 1:64 c											
	101 = 1:32 clock divide											
	100 = 1:16 clock divide 011 = 1:8 clock divide											
	011 = 1.8 clc 010 = 1:4 clc											
	001 = 1:2 clo											
	000 = 1:1 clo	ock divide										
bit 10-9		0>: QEIx Modu	-									
					$SxCNT \ge QEIx$	GEC						
		ITCMPx pin go ITCMPx pin go										
	00 = Output											
bit 8	SWPAB: Sw	ap QEAx and (QEBx Inputs bi	t								
		d QEBx are sv			ecoder logic							
	0 = QEAx an	d QEBx are no	t swapped									
1.11.7												
bit 7		OMEx Input Po	plarity Select b	it								
DIT /	1 = Input is ir	nverted	plarity Select b	it								
	1 = Input is ir 0 = Input is n	nverted lot inverted	-	it								
bit 6	1 = Input is ir 0 = Input is n IDXPOL: INE	nverted not inverted DXx Input Pola	-	it								
	1 = Input is ir 0 = Input is n	nverted not inverted DXx Input Pola nverted	-	it								
bit 6	1 = Input is ir 0 = Input is n IDXPOL: INE 1 = Input is ir 0 = Input is n	nverted lot inverted DXx Input Pola nverted lot inverted	ity Select bit	it								
	1 = Input is ir 0 = Input is n IDXPOL: INE 1 = Input is ir 0 = Input is n	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola	ity Select bit	it								
bit 6	1 = Input is ir 0 = Input is n IDXPOL: INE 1 = Input is ir 0 = Input is n QEBPOL: Q	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola inverted	ity Select bit	it								
bit 6	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is in 0 = Input is in	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola inverted	ity Select bit rity Select bit	it								
bit 6 bit 5	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is i 0 = Input is i QEAPOL: Q 1 = Input is i	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola not inverted EAx Input Pola inverted	ity Select bit rity Select bit	it								
bit 6 bit 5 bit 4	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is in QEAPOL: Q 1 = Input is in 0 = Input is in	nverted not inverted DXx Input Pola nverted EBx Input Pola inverted not inverted EAx Input Pola inverted not inverted not inverted	rity Select bit rity Select bit rity Select bit									
bit 6 bit 5	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is in QEAPOL: Q 1 = Input is in 0 = Input is in	nverted not inverted DXx Input Pola not inverted EBx Input Pola inverted not inverted EAx Input Pola inverted not inverted not inverted us of HOMEx Ir	rity Select bit rity Select bit rity Select bit		l bit							

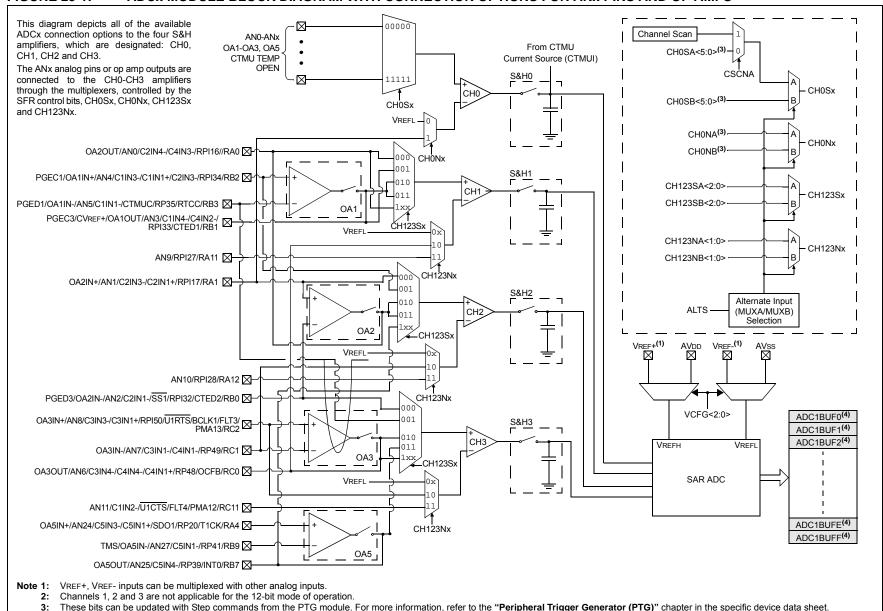
REGISTER 17-2: QEIXIOC: QEIX I/O CONTROL REGISTER

© 2013-2014 Microchip Technology Inc.

REGISTER 21-8: CxEC: CANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TERRCNT7 | TERRCNT6 | TERRCNT5 | TERRCNT4 | TERRCNT3 | TERRCNT2 | TERRCNT1 | TERRCNT0 |
| bit 15 | | | | | | | bit 8 |

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| RERRCNT7 | RERRCNT6 | RERRCNT5 | RERRCNT4 | RERRCNT3 | RERRCNT2 | RERRCNT1 | RERRCNT0 |
| bit 7 | | | | | | | bit 0 |


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_		—	—	—	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ited: Read as '	0'				
bit 15-8 bit 7-6	-	i ted: Read as ' Synchronization		bits			
	SJW<1:0>: S 11 = Length i	Synchronization is 4 x TQ		bits			
	SJW<1:0>: S 11 = Length i 10 = Length i	Synchronization is 4 x TQ is 3 x TQ		bits			
	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ		bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i	Synchronization Is 4 x TQ Is 3 x TQ Is 2 x TQ Is 1 x TQ	i Jump Width	bits			
	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization Is 4 x TQ Is 3 x TQ Is 2 x TQ Is 1 x TQ	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: B 11 1111 = T	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	a Jump Width caler bits FCAN	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E 11 1111 = T 00 0010 = T	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ aud Rate Pres TQ = 2 x 64 x 1/2	a Jump Width caler bits FCAN	bits			

33EPXXXGM3XX/6XX

0

4: When ADDMAEN (ADxCON4<8>) = 1, enabling DMA, only ADCxBUF0 is used.

ADCX MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANX PINS AND OP AMPS

REGISTER 29-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		X<3	31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		X<2	23:16>			
						bit 0
oit	W = Writable I	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown
	R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 X<2	X<31:24> $R/W-0 R/W-0 R/W-0$ $X<23:16>$ $W = Writable bit U = Unimpler$	X<31:24> $R/W-0 R/W-0 R/W-0 R/W-0$ $X<23:16>$ bit U = Unimplemented bit, real	$X < 31:24 >$ $R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad R/W-0 \qquad X < 23:16 >$ bit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 29-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	:15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
10.00-0	10,00-0	10.00-0	X<7:1>	10.00-0	10.00-0	10.00-0	-
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at POR '1' = B		'1' = Bit is set	= Bit is set		'0' = Bit is cleared		nown

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

Г

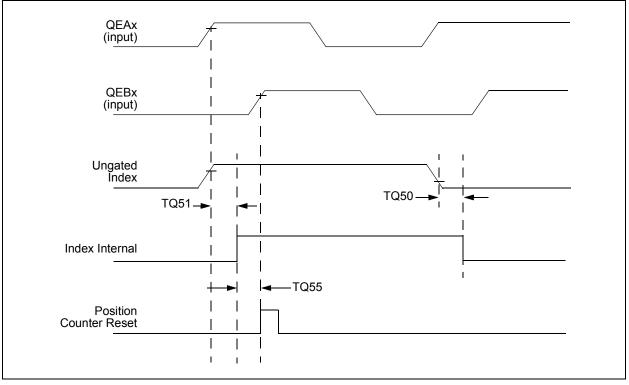
AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N			ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N			ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from E Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

TABLE 33-23: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS . .

... ~

.

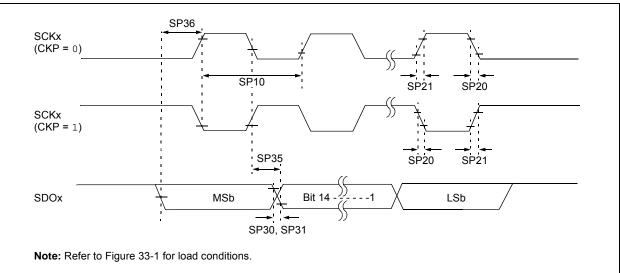
.


.

Note 1: These parameters are characterized, but are not tested in manufacturing.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No. Symbol Characteristic ⁽¹⁾				Min.	Тур.	Max.	Units	Conditions	
TC10	ТтхН	TxCK High Time	Synchronous	Tcy + 20	_	_	ns	Must also meet Parameter TC15	
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15	
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40	_	—	ns	N = Prescale value (1, 8, 64, 256)	
TC20	TCKEXTMRL	Delay from I Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.


TABLE 33-31: QEIX INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol Characteristic ¹		Min.	Max.	Units	Conditions	
TQ50	TqIL	Filter Time to Recognize Low with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize High with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 TCY	—	ns		

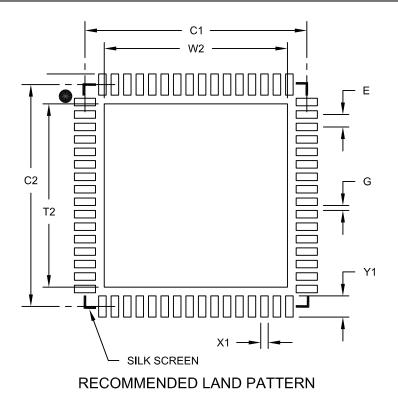
Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEAx and QEBx is shown for Position Counter Reset timing only. Shown for forward direction only (QEAx leads QEBx). Same timing applies for reverse direction (QEAx lags QEBx) but index pulse recognition occurs on falling edge.

TABLE 33-33:SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. Symbol Characteristic ⁽¹⁾			Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency	—	_	15	MHz	(Note 3)	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

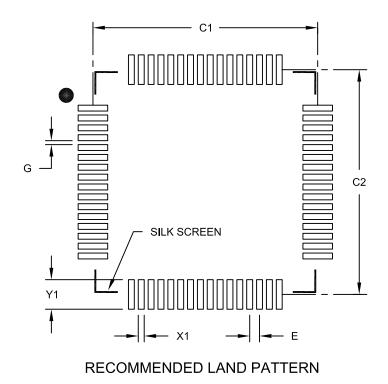
4: Assumes 50 pF load on all SPIx pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	0.50 BSC			
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS							
	Units							
Dimensio	MIN	NOM	MAX					
Contact Pitch	E	0.50 BSC						
Contact Pad Spacing	C1		11.40					
Contact Pad Spacing	C2		11.40					
Contact Pad Width (X64)	X1			0.30				
Contact Pad Length (X64)	Y1			1.50				
Distance Between Pads	G	0.20						

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B