

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm706-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin #	Full Pin Name	Pin #	Full Pin Name
1	TDO/PWM4H/PMD4/RA10	E8	AN47/INT4/RA15
2	RPI45/PWM2L/CTPLS/PMD3/RB13	E9	RPI72/RD8
.3	RP125/RG13	E10	PGED2/ASDA2/RP37/RB5
4	RP42/PWM3H/PMD0/RB10	E11	AN46/INT3/RA14
A5	RPI112/RG0	F1	MCLR
A6	RP97/RF1	F2	AN17/ASDA1/RP120/PMA3/RG8
A7	VDD	F3	AN16/RPI121/PMA2/RG9
A8	No Connect	F4	AN18/ASCL1/RPI119/PMA4/RG7
A9	RPI76/RD12	F5	Vss
A10	RP54/RC6	F6	No Connect
A11	TMS/OA5IN-/AN27/C5IN1-/RP41/RB9	F7	No Connect
B1	No Connect	F8	VDD
B2	AN23/RP127/RG15	F9	AN49/OSC1/CLKI/RPI60/RC12
B3	RPI44/PWM2H/PMD2/RB12	F10	Vss
B4	RP43/PWM3L/PMD1/RB11	F11	OSC2/CLKO/RPI63/RC15
B5	RF7	G1	AN21/RE8
B6	RPI96/RF0	G2	AN20/RE9
B7	VCAP	G3	AN22/RG10
B8	RP69/PMRD/RD5	G4	No Connect
B9	RP55/PMBE/RC7	G5	VDD
310	Vss	G6	Vss
311	TCK/AN26/CVREF10/SOSCO/RP40/T4CK/RB8	G7	Vss
C1	RPI46/PWM1H/T3CK/T7CK/PMD6/RB14	G8	No Connect
C2	VDD	G9	AN45/RF5
C3	RPI124/RG12	G10	AN43/RG3
C4	RP126/RG14	G11	AN44/RF4
C5	RF6	H1	AN10/RPI28/RA12
C6	No Connect	H2	AN9/RPI27/RA11
C7	RP57/RC9	H3	No Connect
C8	RP56/PMWR/RC8	H4	No Connect
C9	No Connect	H5	No Connect
C10	SOSCI/RPI61/RC13	H6	VDD
C11	AN48/CVREF20/RPI58/PMCS1/RC10	H7	No Connect
D1	PWM5L/RD1	H8	AN28/SDI1/RPI25/RA9
D2	RPI47/PWM1L/T5CK/T6CK/PMD7/RB15	H9	AN29/SCK1/RPI51/RC3
D3	TDI/PWM4L/PMD5/RA7	H10	AN31/SCL1/RPI53/RC5
D4	No Connect	H11	AN42/RG2
D5	No Connect	J1	OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0
D6	No Connect	J2	OA2IN+/AN1/C2IN3-/C2IN1+/RPI17/RA1
D7	RP70/RD6	J3	PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RTCC/R
D8	RPI77/RD13	J4	AVDD
D9	OA5OUT/AN25/C5IN4-/RP39/INT0/RB7	J5	AN11/C1IN2-/U1CTS/FLT4/PMA12/RC11
10	No Connect	J6	AN35/RG11
			AN12/C2IN2-/C5IN2-/U2RTS/BCLK2/FLT5/PMA11/R

TABLE 2: PIN NAMES: dsPIC33EP128/256/512GM310/710 DEVICES ^{(1,2}

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select (PPS)" for available peripherals and for information on limitations.

Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
 The availability of I²C[™] interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 30.0 "Special Features" for more information.

TABLE 1-1:	PINOUT I/	O DESC	RIPTI	ONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	PPS	Description
U1CTS U1RTS U1RX U1TX	 0	ST — ST —	Yes Yes Yes Yes	UART1 Clear-to-Send. UART1 Ready-to-Send. UART1 receive. UART1 transmit.
U2CTS		ST	Yes	UART2 Clear-to-Send.
U2RTS		—	Yes	UART2 Ready-to-Send.
U2RX		ST	Yes	UART2 receive.
U2TX		—	Yes	UART2 transmit.
U3CTS		ST	Yes	UART3 Clear-to-Send.
U3RTS		—	Yes	UART3 Ready-to-Send.
U3RX		ST	Yes	UART3 receive.
U3TX		—	Yes	UART3 transmit.
U4CTS		ST	Yes	UART4 Clear-to-Send.
U4RTS		—	Yes	UART4 Ready-to-Send.
U4RX		ST	Yes	UART4 receive.
U4TX		—	Yes	UART4 transmit.
SCK1	/O	ST	No	Synchronous serial clock input/output for SPI1.
SDI1		ST	No	SPI1 data in.
<u>SDO</u> 1		—	No	SPI1 data out.
SS1	/O	ST	No	SPI1 slave synchronization or frame pulse I/O.
SCK2	/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2		ST	Yes	SPI2 data in.
SDO2		—	Yes	SPI2 data out.
SS2	/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCK3	/O	ST	Yes	Synchronous serial clock input/output for SPI3.
SDI3		ST	Yes	SPI3 data in.
SDO3		—	Yes	SPI3 data out.
SS3	/O	ST	Yes	SPI3 slave synchronization or frame pulse I/O.
SCL1	/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS		ST	No	JTAG Test mode select pin.
TCK		ST	No	JTAG test clock input pin.
TDI		ST	No	JTAG test data input pin.
TDO	0	—	No	JTAG test data output pin.
	S = CMOS co			

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CO	CONTINUED)
--	------------

ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

O = Output TTL = TTL input buffer I = Input

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

TABLE 4-10: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC2	0C46								PDC2	<15:0>						•	•	0000
PHASE2	0C48								PHASE	2<15:0>								0000
DTR2	0C4A	_	_							DTR2	<13:0>							0000
ALTDTR2	0C4C	_	_							ALTDTR	2<13:0>							0000
SDC2	0C4E		•						SDC2	<15:0>								0000
SPHASE2	0C50								SPHAS	=2<15:0>								0000
TRIG2	0C52								TRGCM	IP<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C78								PWMCA	P2<15:0>						•	•	0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	LEB<11:0> 0000									0000						
AUXCON2	0C5E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON3	0C64	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC3	0C66								PDC3	<15:0>								0000
PHASE3	0C68								PHASE	3<15:0>								0000
DTR3	0C6A	_	_							DTR3	<13:0>							0000
ALTDTR3	0C6C	_	-							ALTDTR	3<13:0>							0000
SDC3	0C6E								SDC3	<15:0>								0000
SPHASE3	0C70								SPHASE	E3<15:0>								0000
TRIG3	0C72								TRGCM	IP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMCA	P3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	LEB<11:0> 00									0000						
AUXCON3	0C7E	_	-	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DCICON1	0280	DCIEN	r	DCISIDL	r	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	r	r	r	COFSM1	COFSM0	0000
DCICON2	0282	r	r	r	r	BLEN1	BLEN0	r	COFSG3	COFSG2	COFSG1	COFSG0	r	WS3	WS2	WS1	WS0	0000
DCICON3	0284	r	r r r r 000									0000						
DCISTAT	0286	r	r	r	r	SLOT3	SLOT2	SLOT1	SLOT0	r	r	r	r	ROV	RFUL	TUNF	TMPTY	0000
TSCON	0288								TSE<	15:0>								0000
RSCON	028C								RSE<	15:0>								0000
RXBUF0	0290							F	Receive 0 D	ata Registe	r							uuuu
RXBUF1	0292							F	Receive 1 D	ata Registe	r							uuuu
RXBUF2	0294							F	Receive 2 D	ata Registe	r							uuuu
RXBUF3	0296							F	Receive 3 D	ata Registe	r							uuuu
TXBUF0	0298							T	ransmit 0 D	ata Registe	r							0000
TXBUF1	029A	Transmit 1 Data Register 000									0000							
TXBUF2	029C	Transmit 2 Data Register 000										0000						
TXBUF3	029E													0000				
Lanada		L				1 (a) D												

Legend: u = unchanged; r = reserved; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
			—	ILR3	ILR2	ILR1	ILR0
bit 15		1					bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7	VECINOMIC	VECINONIS	VECINONIA	VECINONIS	VECINONIZ	VECNOWI	bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 11-8	1111 = CPU • • • • •	w CPU Interrup Interrupt Priorit Interrupt Priorit	y Level is 15 y Level is 1				
bit 7-0	VECNUM<7:	Interrupt Priorit 0>: Vector Num 255, Reserved	ber of Pendin	g Interrupt bits			
	00001000 = 00000111 = 00000110 = 00000101 = 00000100 = 00000011 = 00000010 =	9, IC1 – Input 0 8, INT0 – Exter 7, Reserved; do 6, Generic soft 5, DMA Contro 4, Math error tr 3, Stack error tr 2, Generic hard 1, Address erro	nal Interrupt C o not use error trap ller error trap ap rap d trap or trap)			

REGISTER 11-40: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—			RP118	3R<5:0>					
bit 15		-					bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—			RP113	3R<5:0>					
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimplemer	nted: Read as '	0'							
bit 13-8 RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)										
bit 7-6 Unimplemented: Read as '0'										

bit 5-0 **RP113R<5:0>:** Peripheral Output Function is Assigned to RP113 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP1251	R<5:0>		
bit 15							bit 8
U-0	11.0		DAMO		D/M/ 0	R/W-0	D/M/ O
0-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP1201	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown							nown

REGISTER 11-41: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP125R<5:0>:** Peripheral Output Function is Assigned to RP125 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON AND T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾		TSIDL ⁽²⁾	_	_	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		—	TCS ^(1,3)	—
bit 7							bit 0
Legend:							

3				
R = Read	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Tin	nery On bit ⁽¹⁾		
	1 = Starts	s 16-bit Timery		
	0 = Stops	s 16-bit Timery		
bit 14	Unimple	mented: Read as '0'		
bit 13	TSIDL: 1	imery Stop in Idle Mode bit	2)	
	1 = Disco	ontinues module operation v	when device enters Idle mode	
	0 = Cont	inues module operation in lo	dle mode	
bit 12-7	Unimple	mented: Read as '0'		
bit 6	TGATE:	Timery Gated Time Accumu	lation Enable bit ⁽¹⁾	
	When TC			
	This bit is	s ignored.		
	When TO			
		d time accumulation is enab d time accumulation is disat		
6:4 E 4		1:0>: Timery Input Clock Pr		
bit 5-4	11 = 1:2	v 1	escale Select bits	
	11 = 1.23 10 = 1:64			
	01 = 1:8	T		
	00 = 1:1			
bit 3-2	Unimple	mented: Read as '0'		
bit 1	TCS: Tin	nery Clock Source Select bit	₍ (1,3)	
	1 = Exter	rnal clock from pin, TyCK (or	n the rising edge)	
	0 = Inter	nal clock (FP)		
bit 0	Unimple	mented: Read as '0'		
Note 1:		peration is enabled (T2CON set through TxCON.	I<3> = 1), these bits have no ef	ffect on Timery operation; all timer

2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

HS/HC-0) HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
FLTSTAT((1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾				
bit 15						•	bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
DTC1	DTC0	DTCP ⁽³⁾	<u> </u>	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾				
bit 7							bit				
Legend:		HC = Hardware			are Settable bit						
R = Reada		W = Writable b	it	-	mented bit, rea						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN				
bit 15		ault Interrupt Sta	tue hit(1)								
DIL 15		errupt is pending									
		interrupt is pending									
	This bit is cle	ared by setting:	FLTIEN = 0.								
bit 14	CLSTAT: Cu	rrent-Limit Interi	upt Status bit ⁽¹⁾)							
		1 = Current-limit interrupt is pending									
		0 = No current-limit interrupt is pending This bit is cleared by setting: CLIEN = 0.									
bit 13											
DIC 15		TRGSTAT: Trigger Interrupt Status bit 1 = Trigger interrupt is pending									
		0 = No trigger interrupt is pending									
	This bit is cle	ared by setting:	TRGIEN = 0.								
bit 12		FLTIEN: Fault Interrupt Enable bit									
		errupt is enabled errupt is disabled		TAT bit is clear	red						
bit 11	CLIEN: Curre	ent-Limit Interru	pt Enable bit								
		imit interrupt is of init interrupt is of init interrupt is of the second second second second second second se		e CLSTAT bit i	s cleared						
bit 10		gger Interrupt E									
		event generate		equest							
		vent interrupts a		d the TRGSTA	T bit is cleared						
bit 9	ITB: Indepen	ident Time Base	e Mode bit ⁽²⁾								
		register provide egister provides				ator					
bit 8	MDCS: Mast	MDCS: Master Duty Cycle Register Select bit ⁽²⁾									
	1 = MDC reg	ister provides d gister provides d	uty cycle inform	nation for this F	-						
Note 1:	Software must cle	ear the interrupt	status here and	d in the corres	ponding IFSx b	it in the interru	pt controller.				
	These bits should	•		-	•						
	DTC<1:0> = 11 fo	-									
	The Independent CAM bit is ignore		5 = 1) mode mu	st be enabled i	to use Center-A	Aligned mode. I	If ITB = 0, the				

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Quadrature Encoder Interface (QEI)" (DS70601) which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- · 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High Register
- 32-Bit Position Compare Low Register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- · External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEIx block diagram.

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0			
_		PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN			
bit 15							bit 8			
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0			
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN			
bit 7							bit 0			
Legend:		HS = Hardware		C = Clearable						
R = Readable		W = Writable b	bit		nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-14	Unimplome	ntad. Dood oo '	,							
bit 13	-	nted: Read as '(nnara Statua hi					
DIL IO		Position Counter IT ≥ QEIxGEC	er Greater i Na	n or Equal Cor	npare Status DI	ι				
		IT < QEIXGEC								
bit 12	PCHEQIEN:	Position Counter	er Greater Tha	n or Equal Con	npare Interrupt	Enable bit				
		PCHEQIEN: Position Counter Greater Than or Equal Compare Interrupt Enable bit 1 = Interrupt is enabled								
	0 = Interrupt				o					
bit 11	PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit 1 = POSxCNT ≤ QEIxLEC									
	0 = POSXCNT > QEIXLEC									
bit 10	PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit									
	1 = Interrupt is enabled									
	0 = Interrupt									
bit 9	POSOVIRQ: Position Counter Overflow Status bit									
	1 = Overflow has occurred 0 = No overflow has occurred									
bit 8				errupt Enable b	bit					
	POSOVIEN: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled									
	0 = Interrupt is disabled									
bit 7		sition Counter (H	÷.	ation Process	Complete Statu	us bit ⁽¹⁾				
		IT was reinitializ								
bit 6		IT was not reinit sition Counter (H		ation Process	Complete inter	runt Enable bit				
DILO		-	oming) mitianz	auoniniocess						
	1 = Interrupt is enabled 0 = Interrupt is disabled									
bit 5	VELOVIRQ: Velocity Counter Overflow Status bit									
	1 = Overflow has occurred									
		low has occurre			.,					
bit 4		Velocity Counte	r Overflow Inte	errupt Enable b	It					
	1 = Interrupt 0 = Interrupt									
bit 3	-	atus Flag for Ho	me Event Stat	us bit						
		ent has occurre								
	0 = No home	e event has occu	irred							

REGISTER 17-3: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

REGISTER 21-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			FLTE	N<15:8>				
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			FLTE	N<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U =				U = Unimpler	U = Unimplemented bit, read as '0'			
-n = Value at P	/alue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown			

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0
bit 15	•	•	•		•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'	
R = Readabl -n = Value at		W = Writable '1' = Bit is set		U = Unimpler '0' = Bit is cle	,	l as '0' x = Bit is unkr	nown
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	,		nown
	F3BP<3:0>:	'1' = Bit is set RX Buffer Mas	t k for Filter 3 b	ʻ0' = Bit is cle	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		iown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter 1110 = Filter 0001 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bu n RX Buffer 14 n RX Buffer 1	ʻ0' = Bit is cle its ffer	,		nown
-n = Value at bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0	'0' = Bit is cle its ffer ↓	ared	x = Bit is unkr	nown
-n = Value at	F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0	'0' = Bit is cle its ffer ↓	,	x = Bit is unkr	nown
-n = Value at bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter 0001 = Filter 0000 = Filter F2BP<3:0>:	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in RX Buffer Mas	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0 k for Filter 2 b	'0' = Bit is cle its ffer its (same value	ared	x = Bit is unkr	nown

BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set	= Bit is set '0' = Bit is cleared x = Bit is unknown			nown	

bit 15-8 Byte 7<15:8>: CANx Message Byte 7

bit 7-0 Byte 6<7:0>: CANx Message Byte 6

BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	—	—			FILHIT<4:0>(1)			
bit 15			bit 8						

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

bit 15 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60% 000010 = Minimum positive change from nominal current + 4% 000001 = Minimum positive change from nominal current + 2% 0000001 = Minimum positive change from nominal current + 2% <	bit 15	•						bit
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60% 000010 = Minimum positive change from nominal current + 4% 000001 = Minimum positive change from nominal current + 2% 0000001 = Minimum positive change from nominal current + 2% <								U-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60% • • • 000010 = Minimum positive change from nominal current + 4% 000000 = Minimum positive change from nominal current + 2% 000000 = Nominal current output specified by IRNG<1:0> 11111 = Minimum negative change from nominal current - 2% 111110 = Minimum negative change from nominal current - 4% • • 100010 = Maximum negative change from nominal current - 60% 100010 = Maximum negative change from nominal current - 62% bit 9-8 IRNG<1:0>: Current Source Range Select bits 11 = 100 × Base Current ⁽²⁾ 10 = 10 × Base Current ⁽²⁾ 10 = 10 × Base Current ⁽²⁾ 00 = 1000 × Base Current ^(1,2) 00 = 1000 × Base Current Level ⁽²⁾ 00 = 1000 × Base Current ^(1,2)	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60% • • • 000010 = Minimum positive change from nominal current + 4% 000001 = Minimum positive change from nominal current + 2% 000000 = Nominal current output specified by IRNG<1:0> 11111 = Minimum negative change from nominal current - 2% 111110 = Minimum negative change from nominal current - 4% • • 100010 = Maximum negative change from nominal current - 60% 100010 = Maximum negative change from nominal current - 60% 100010 = Maximum negative change from nominal current - 62% bit 9-8 IRNG<1:0>: Current Source Range Select bits 11 = 100 × Base Current(⁽²⁾) 10 = Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽¹⁾ ,2) 00 = 1000 × Base Current(⁽¹⁾ ,2) 00 = 1000 × Base Current(⁽¹⁾ ,2) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾)	 bit 7	_	_	_	_	—	—	bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60% • • • 000010 = Minimum positive change from nominal current + 4% 000001 = Minimum positive change from nominal current + 2% 000000 = Nominal current output specified by IRNG<1:0> 11111 = Minimum negative change from nominal current - 2% 111110 = Minimum negative change from nominal current - 4% • • 100010 = Maximum negative change from nominal current - 60% 111110 = Minimum negative change from nominal current - 60% 100010 = Maximum negative change from nominal current - 62% bit 9-8 IRNG<1:0>: Current Source Range Select bits 11 = 100 × Base Current(⁽²⁾) 10 = 10 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽¹⁾) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾) 00 = 1000 × Base Current(⁽²⁾) 00	Logondi							
bit 15-10 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60% • • • • • • • • • • • • • • • • • • •	-	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
<pre>011111 = Maximum positive change from nominal current + 62% 011110 = Maximum positive change from nominal current + 60%</pre>	-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
 11 = 100 × Base Current⁽²⁾ 10 = 10 × Base Current⁽²⁾ 01 = Base Current Level⁽²⁾ 00 = 1000 × Base Current^(1,2) bit 7-0 Unimplemented: Read as '0' Note 1: This current range is not available for use with the internal temperature measurement diode. 2: Refer to the CTMU Current Source Specifications (Table 33-55) in Section 33.0 "Electrical 		000001 = Min 000000 = No 111111 = Min 111110 = Min • • 100010 = Ma	nimum positive minal current o nimum negative nimum negative aximum negative	change from i output specified e change from e change from re change from	nominal current d by IRNG<1:0> nominal curren nominal curren	+ 2% t – 2% t – 4% nt – 60%		
 Note 1: This current range is not available for use with the internal temperature measurement diode. 2: Refer to the CTMU Current Source Specifications (Table 33-55) in Section 33.0 "Electrical 		IRNG<1:0>: 0 11 = 100 × Ba 10 = 10 × Bas 01 = Base Cu 00 = 1000 × B	Current Source ase Current ⁽²⁾ se Current ⁽²⁾ urrent Level ⁽²⁾ Base Current ⁽¹⁾	Range Select				
2: Refer to the CTMU Current Source Specifications (Table 33-55) in Section 33.0 "Electrical		-			4h - 1	4		
Characteristics" for the current range selection values.	2 : F	Refer to the CTM	U Current Sou	rce Specificatio	ons (Table 33-5	-		

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

REGISTER 25-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGC1	LIM<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGC'	LIM<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			t	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is un				x = Bit is unkr	nown			

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command, or as a limit register for the General Purpose Counter 1.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

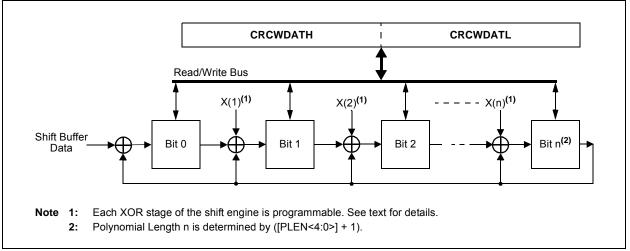
REGISTER 25-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

'1' = Bit is set

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHO	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHC)LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register with the PTGCOPY command.

'0' = Bit is cleared


Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

n = Value at POR

x = Bit is unknown

dsPIC33EPXXXGM3XX/6XX/7XX

29.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

 $\begin{array}{c} x16+x12+x5+1\\ \text{ and }\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+\\ x7+x5+x4+x2+x+1 \end{array}$

To program these polynomials into the CRC generator, set the register bits as shown in Table 29-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 29-1:	CRC SETUP EXAMPLES FOR
	16 AND 32-BIT POLYNOMIAL

CRC Control	Bit Values						
Bits	16-Bit Polynomial	32-Bit Polynomial					
PLEN<4:0>	01111	11111					
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001					
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x					

30.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

dsPIC33EPXXXGM3XX/6XX/7XX devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

30.1 Configuration Bits

In dsPIC33EPXXXGM3XX/6XX/7XX devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 30-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

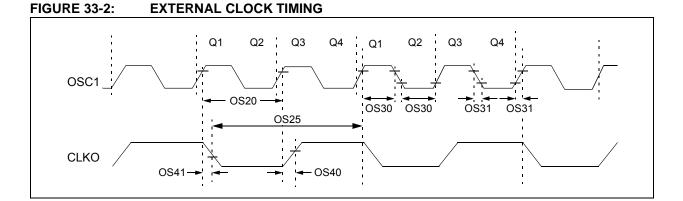
Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash bytes map is shown in Table 30-1.


TABLE 33-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Тур. ⁽²⁾	Max.	Units	Units Conditions					
Power-Down	Current (IPD)	(1)							
DC60d	35	100	μA	-40°C		Dava Dava Dava Overant			
DC60c	40	200	μA	+25°C	3.3V				
DC60b	250	500	μA	+85°C	3.3V	Base Power-Down Current			
DC60c	1000	2500	μA	+125°C					
DC61d	8	10	μA	-40°C					
DC61c	10	15	μA	+25°C	2 2)/	Watchdog Timer Current: ΔIwDT ⁽³⁾			
DC61b	12	20	μA	+85°C	3.3V				
DC61c	13	25	μA	+125°C					

Note 1: IPD (Sleep) current is measured as follows:

CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with
 external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
 ITAC is disabled
- JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10 32.4	 32.768	10 25 33.1	MHz MHz kHz	XT HS SOSC	
OS20	Tosc	Tosc = 1/Fosc	8.33		DC	ns	TA = +125°C	
		Tosc = 1/Fosc	7.14		DC	ns	TA = +85°C	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67		DC	ns	TA = +125°C	
			14.28		DC	ns	TA = +85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	_	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	_	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C	
			—	6	—	mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 33-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 33-39:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCKx Input Frequency	—		11	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	—	—	ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		ADC A	ccuracy (10-Bit N	lode)			
AD20b	Nr	Resolution	10) Data B	its	bits		
AD21b	INL	Integral Nonlinearity	-0.625	_	0.625	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$	
			-1.5	_	1.5	LSb	$+85^{\circ}C < TA \le +125^{\circ}C$ (Note 2)	
AD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$	
			-0.25	_	0.25	LSb	+85°C < TA \leq +125°C (Note 2)	
AD23b	Gerr	Gain Error	-2.5		2.5	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-2.5	_	2.5	LSb	+85°C < TA \leq +125°C (Note 2)	
AD24b	EOFF	Offset Error	-1.25		1.25	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-1.25	_	1.25	LSb	+85°C < TA \leq +125°C (Note 2)	
AD25b	_	Monotonicity	—	_	—	_	Guaranteed	
		Dynamic P	erforman	ce (10-E	Bit Mode)			
AD30b	THD	Total Harmonic Distortion ⁽³⁾	—	64	—	dB		
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	—	57	—	dB		
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	72	—	dB		
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	_	550	—	kHz		
AD34b	ENOB	Effective Number of Bits ⁽³⁾		9.4	—	bits		

TABLE 33-58: ADCx MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, may have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.