

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm706-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers
- Dual motor control

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

FIGURE 3-1: dsPIC33EPXXXGM3XX/6XX/7XX CPU BLOCK DIAGRAM

INDEE	- 02.																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—		RP35R<5:0>			—	—	RP20R<5:0>					0000			
RPOR1	0682	_	_			RP37	R<5:0>			_	_	RP36R<5:0> 0					0000	
RPOR2	0684	_	_			RP39	R<5:0>			_	_	RP38R<5:0> 000					0000	
RPOR3	0686	_	_			RP41	R<5:0>			_	_	RP40R<5:0> 00						0000
RPOR4	0688	_	-			RP43	R<5:0>			_	-	RP42R<5:0> 00					0000	
RPOR5	068A	_	_			RP49	R<5:0>			_	—	RP48R<5:0>					0000	
RPOR6	068C	_	_			RP55	R<5:0>			_	—	RP54R<5:0>					0000	
RPOR7	068E	_	_			RP57	R<5:0>			_	—	RP56R<5:0>				0000		
RPOR8	0690	_	_			RP70	R<5:0>			_	—	RP69R<5:0>					0000	
RPOR9	0692	_	_			RP97	R<5:0>			_	_	RP81R<5:0>					0000	
RPOR10	0694	_	_		RP118R<5:0>			_	_	RP113R<5:0>					0000			
RPOR11	0696	_	-		RPR125R<5:0>			_	—	RPR120R<5:0>					0000			
RPOR12	0698	—	_			RPR12	7R<5:0>				_			RPR12	6R<5:0>			0000

TABLE 4-32: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

 bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device was in Sleep mode

 0 = Device was not in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device was in Idle mode

 0 = Device was not in Idle mode

 0 = Device was not in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

bit 0 **POR:** Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP	_	—	—	—	_
bit 15				·		•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_	—	INT2EP	INT1EP	INT0EP
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	GIE: Global I	nterrupt Enable	e bit				
	1 = Interrupts	and associate	d IECx bits a	re enabled			
	0 = Interrupts	are disabled,	but traps are	still enabled			
bit 14	DISI: DISI Ir	struction Statu	s bit				
	1 = DISI inst	truction is activ	e				
hit 12		aftware Trap St	ictive atus bit				
DIL 13	1 = Software	tran is enabled					
	0 = Software	trap is disabled	d				
bit 12-3	Unimplemen	ted: Read as '	0'				
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edge Detec	t Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge	-			
	0 = Interrupt	on positive edg	je				
bit 1	INT1EP: Exte	ernal Interrupt 1	1 Edge Detec	t Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge				
	0 = Interrupt	on positive edg	le				
bit 0	INTOEP: Exte	ernal Interrupt () Edge Detec	t Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge				
		on positive edg	le.				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit (read/clear by application) ⁽⁵⁾
	1 = FSCM has detected clock failure0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enables Secondary Oscillator (SOSC)0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS70580), available from the Microchip web site for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This register resets only on a Power-on Reset (POR).
 - 4: Secondary Oscillator (SOSC) selection is valid on 64-pin and 100-pin devices, and defaults to FRC/N on 44-pin devices.
 - 5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER	R 4
---	-----

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0				
	<u> </u>	U4MD		REFOMD	CTMUMD	<u> </u>	—				
bit 7							bit 0				
r											
Legend:											
R = Readable	e bit	W = Writable b	oit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
bit 15-6	Unimplemen	ted: Read as '0)'								
bit 5	U4MD: UART	4 Module Disal	ole bit								
	1 = UART4 m	odule is disable	ed								
	0 = UART4 m	odule is enable	d								
bit 4	Unimplemen	ted: Read as '0)'								
bit 3	REFOMD: Re	eference Clock	Module Disabl	e bit							
	1 = Reference clock module is disabled										
	0 = Reference clock module is enabled										
bit 2	CTMUMD: C	CTMUMD: CTMU Module Disable bit									
	1 = CTMU mo	odule is disable	d								
	0 = CTMU mo	odule is enabled	t								

bit 1-0 Unimplemented: Read as '0'

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	_	—	—	—	—	—	SPI3MD	
bit 7			•				bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplen	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-14	Unimplemented: Read as '0'
bit 13-8	PWM6MD:PWM1MD: PWMx (x = 1-6) Module Disable bit
	1 = PWMx module is disabled
	0 = PWMx module is enabled
bit 7-1	Unimplemented: Read as '0'
bit 0	SPI3MD: SPI3 Module Disable bit
	1 = SPI3 module is disabled 0 = SPI3 module is enabled

© 2013-2014 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC1R<6:0>			
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	IC2R<6:0>: (see Table 2	Assign Input Ca	apture 2 (IC2 selection nu) to the Correspo mbers)	onding RPn P	in bits	
	1111100 =	Input tied to RPI	1124				
	•						
	•						
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	IC1R<6:0>: (see Table ?	Assign Input Ca 11-2 for input pin	apture 1 (IC1) selection nu) to the Correspo mbers)	onding RPn P	in bits	
	1111100 =	Input tied to RP	1124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	3				

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 11-32: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—			RP39	R<5:0>					
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP38R<5:0>							
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-14	Unimpleme	n ted: Read as '	0'							
bit 13-8	RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-3 for peripheral function numbers)									
bit 7-6	Unimpleme	n ted: Read as '	0'							
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits									

(see Table 11-3 for peripheral function numbers)

REGISTER 11-33: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—			RP41	R<5:0>					
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP40R<5:0>							
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13-8	13-8 RP41R<5:0>: Peripheral Output Function is Assigned to RP41 Output Pin bits									

(see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-34: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—			RP43R•	<5:0>			
bit 15		·					bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP42R	<5:0>			
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15-14	Unimpleme	ented: Read as '	0'					
bit 13-8	RP43R<5:0	>: Peripheral Ou	Itput Function	n is Assigned to R	P43 Output	Pin bits		

Unimplemented: Read as '0'
RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

(see Table 11-3 for peripheral function numbers)

REGISTER 11-35: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—		RP49R<5:0>					
bit 15		·					bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP48R	<5:0>			
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown	
<u></u>								
1 11 A E A A			~ '					

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 17-8: INDXxCNTH: INDEX COUNTER x HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDXC	NT<31:24>					
bit 15 bit 8									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDXC	NT<23:16>					
bit 7							bit 0		
Legend:									
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-0 INDXCNT<31:16>: High Word Used to Form 32-Bit Index Counter x Register (INDXxCNT) bits

REGISTER 17-9: INDXxCNTL: INDEX COUNTER x LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	CNT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 INDXCNT<15:0>: Low Word Used to Form 32-Bit Index Counter x Register (INDXxCNT) bits

REGISTER 21-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| F15MSK1 | F15MSK0 | F14MSK1 | F14MSK0 | F13MSK1 | F13MSK0 | F12MSK1 | F12MSK0 |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask
bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bits 15-14)
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bits 15-14)
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bits 15-14)
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bits 15-14)
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bits 15-14)
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bits 15-14)
bit 1-0	F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bits 15-14)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_								
bit 7							bit 0	
Logondi								
R = Reada	uhle hit	W = Writable	hit	II = I Inimplen	nented hit read	l as 'N'		
-n = Value	at POR	'1' = Rit is set	bit	$0^{\circ} = \text{Bit is clear}$	ared	x = Ritis unkr	nown	
					area		lowin	
bit 15-10	ITRIM<5:0>:	Current Source	e Trim bits					
	011111 = Ma	iximum positive	e change from	nominal curren	t + 62%			
	011110 = Ma	iximum positive	e change from	nominal curren	t + 60%			
	•							
	•							
	000010 = M ir	nimum positive	change from r	nominal current	+ 4%			
	000001 = Mir	nimum positive	change from r	nominal current	+ 2%			
	1111111 = Mir	minal current o	e change from	nominal curren	t – 2%			
	111110 = Mi r	nimum negative	e change from	nominal curren	t – 4%			
	•							
	•							
	100010 = Ma	ximum negativ	e change from	nominal currer	nt – 60%			
	100001 = Ma	iximum negativ	e change from	nominal currer	nt – 62%			
bit 9-8	IRNG<1:0>: (Current Source	Range Select	bits				
	11 = 100 × Ba	ase Current ⁽²⁾						
	$10 = 10 \times Bas$	se Current ⁽²⁾						
	$01 = Base Cu00 = 1000 \times E$	Base Current ^{(1,}	2)					
bit 7-0	Unimplemen	ted: Read as '	0'					
Note 1:	This current range	e is not availab	le for use with	the internal ten	nperature meas	surement diode	2	
2:	Refer to the CTM	U Current Sou	rce Specificatio	ons (Table 33-5	5) in Section 3	3.0 "Electrica	1	
	Characteristics"	for the current	range selectio	n values.	,			

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

33.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGM3XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGM3XX/6XX/7XX family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to +3.6V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	350 mA
Maximum current into VDD pin ⁽²⁾	350 mA
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	18 mA
Maximum current sourced/sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 33-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: RA3, RA4, RA7, RA9, RA10, RB7-RB15, RC3, RC15, RD1-RD4, which are able to sink 30 mA and source 20 mA.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
					-40°	$C \le TA \le$	+125°C for Extended		
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions						
	VIL	Input Low Voltage							
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V			
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant	0.8 Vdd	—	Vdd	V	(Note 3)		
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)		
		I/O Pins with SDAx, SCLx	0.8 Vdd	—	5.5	V	SMBus disabled		
		I/O Pins with SDAx, SCLx	2.1	—	5.5	V	SMBus enabled		
	ICNPU	Change Notification Pull-up Current							
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS		
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾							
DI31			20	50	100	μA	VDD = 3.3V, VPIN = VDD		

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 33-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	am 5. Symbol Characteristic			Тур. ⁽¹⁾	Max.	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{Fosc}}$$

$$\frac{Fosc}{\sqrt{Time Base or Communication Clock}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 33-18: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions			
Internal FRC Accuracy @ FRC Frequency = 7.3728 MHz ⁽¹⁾									
F20a	FRC	-1.5	0.5	+1.5	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F20b	FRC	-2	1.5	+2	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

Note 1: Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 33-19: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
LPRC @ 32.768 kHz									
F21a	LPRC	-15	5	+15	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F21b	LPRC	-30	10	+30	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

^{© 2013-2014} Microchip Technology Inc.

FIGURE 33-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 33-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param. No. Symbol Characteristics ⁽¹⁾			Min.	Max.	Units	Conditions			
IC10	TccL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15			
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15	N = Prescale value (1, 4, 16)		
IC15	TccP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50		ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 33-52: OP AMP/COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			Standard Op (unless othe Operating ter	erating rwise st nperatur	Conditions (se ated) re -40°C ≤ Ta -40°C ≤ Ta	onditions (see Note 3): 3.0V to 3.6V ted) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
Compa	rator AC Ch	aracteristics						
CM10	TRESP	Response Time	—	19	—	ns	V+ input step of 100 mV, V- input held at VDD/2	
CM11	Тмс2о∨	Comparator Mode Change to Output Valid	—	—	10	μs		
Compa	rator DC Ch	naracteristics						
CM30	VOFFSET	Comparator Offset Voltage	_	±20	±75	mV		
CM31	VHYST	Input Hysteresis Voltage	—	30	—	mV		
CM32	Trise/ Tfall	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input	
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db		
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V		
Op Am	p AC Chara	cteristics						
CM20	SR	Slew Rate		9		V/µs	10 pF load	
CM21a	Рм	Phase Margin	_	68	—	Degree	G = 100V/V; 10 pF load	
CM22	Gм	Gain Margin	—	20	—	db	G = 100V/V; 10 pF load	
CM23a	GBW	Gain Bandwidth	—	10	—	MHz	10 pF load	
Op Am	p DC Chara	cteristics						
CM40	VCMR	Common-Mode Input Voltage Range	AVss	—	AVDD	V		
CM41	CMRR	Common-Mode Rejection Ratio	—	40	—	db	Vcm = AVdd/2	
CM42	VOFFSET	Op Amp Offset Voltage	—	±20	±70	mV		
CM43	Vgain	Open-Loop Voltage Gain	_	90	_	db		
CM44	los	Input Offset Current	—	_	—	_	See pad leakage currents in Table 33-10	
CM45	Ів	Input Bias Current	—	_	—	_	See pad leakage currents in Table 33-10	
CM46	Ιουτ	Output Current	_		420	μA	With minimum value of RFEEDBACK (CM48)	
CM48	RFEEDBACK	Feedback Resistance Value	8	_		kΩ	(Note 2)	
CM49a	Vout	Output Voltage	AVss + 0.075		AVDD - 0.075	V	Ιουτ = 420 μΑ	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.