

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm706-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Ref-erence Manual"*, which are available from the Microchip web site (www.microchip.com). These documents should be considered as the general reference for the operation of a particular module or device feature.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70000600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70000598)
- "Timers" (DS70362)
- "Input Capture" (DS70000352)
- "Output Compare" (DS70005157)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582)
- "Serial Peripheral Interface (SPI)" (DS70005185)
- "Inter-Integrated Circuit™ (I²C™)" (DS70000195)
- "Data Converter Interface (DCI) Module" (DS70356)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70000357)
- "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Parallel Master Port (PMP)" (DS70576)
- "Device Configuration" (DS70000618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGM3XX/6XX/7XX family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	conn	ected	independent		of	the	ADC
	volta	ge refe	rence	source.			

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

TABLE 4-6:	OUTPUT COMPARE REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC7CON1	093C	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV		—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC7RS	0940	Output Compare 7 Secondary Register										xxxx						
OC7R	0942	Output Compare 7 Register									xxxx							
OC7TMR	0944							Out	put Compa	are 7 Time	r Value Regis	ster						xxxx
OC8CON1	0946		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC8CON2	0948	FLTMD	FLTOUT	FLTTRIEN	OCINV		_		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC8RS	094A							Ou	tput Comp	are 8 Seco	ondary Regis	ter						xxxx
OC8R	094C	Output Compare 8 Register									xxxx							
OC8TMR	094E							Out	put Compa	are 8 Time	r Value Regis	ster						xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E	See definition when WIN = x																
C2RXFUL1	0520		RXFUL<15:0> 000(0000					
C2RXFUL2	0522		RXFUL<31:16> 0										0000					
C2RXOVF1	0528		RXOVF<15:0> 0									0000						
C2RXOVF2	052A								RXOVF<	<31:16>								0000
C2TR01CON	0530	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C2TR23CON	0532	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C2TR45CON	0534	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C2TR67CON	0536	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	xxxx
C2RXD	0540							CAN2	Receive Da	ta Word Re	egister							xxxx
C2TXD	0542							CAN2	Transmit Da	ta Word Re	egister							xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:							
	L:1		h:+		a a set a d b it was a d	aa (0)	

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing latency is enabled 0 = Fixed exception processing latency is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred
	0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 3	U3MD: UART3 Module Disable bit 1 = UART3 module is disabled 0 = UART3 module is enabled
bit 2	I2C3MD: I2C3 Module Disable bit
	1 = I2C3 module is disabled 0 = I2C3 module is enabled
bit 1	I2C2MD: I2C2 Module Disable bit
	1 = I2C2 module is disabled 0 = I2C2 module is enabled
bit 0	ADC2MD: ADC2 Module Disable bit
	1 = ADC2 module is disabled 0 = ADC2 module is enabled

Note 1: The RTCCMD bit is not available on 44-pin devices.

TABLE 11-3:	OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)
IADEE II-J.	

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
CSDO	001011	RPn tied to DCI Data Output
CSCK	001100	RPn tied to DCI Clock Output
COFS	001101	RPn tied to DCI Frame Sync
C1TX	001110	RPn tied to CAN1 Transmit
C2TX	001111	RPn tied to CAN2 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
OC5	010100	RPn tied to Output Compare 5 Output
OC6	010101	RPn tied to Output Compare 6 Output
OC7	010110	RPn tied to Output Compare 7 Output
OC8	010111	RPn tied to Output Compare 8 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
U3TX	011011	RPn tied to UART3 Transmit
U3RTS	011100	RPn tied to UART3 Ready-to-Send
U4TX	011101	RPn tied to UART4 Transmit
U4RTS	011110	RPn tied to UART4 Ready-to-Send
SDO3	011111	RPn tied to SPI3 Slave Output
SCK3	100000	RPn tied to SPI3 Clock Output
SS3	100001	RPn tied to SPI3 Slave Select
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
SYNCO2	101110	RPn tied to PWM Secondary Time Base Sync Output
QEI1CCMP	101111	RPn tied to QEI1 Counter Comparator Output
QEI2CCMP	110000	RPn tied to QEI2 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				IC6R<6:0>							
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				IC5R<6:0>							
bit 7							bit C				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown				
bit 15	Unimpleme	ented: Read as '	0'								
bit 14-8	IC6R<6:0>: (see Table 2	IC6R<6:0>: Assign Input Capture 6 (IC6) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)									
	1111100 =	1111100 = Input tied to RPI124									
	•										
	•										
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1								
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-0	IC5R<6:0>: (see Table ?	Assign Input Ca 11-2 for input pin	apture 5 (IC5) selection nu) to the Correspo mbers)	onding RPn P	in bits					
	1111100 =	Input tied to RP	1124								
	•										
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	Input tied to Vss	3								

REGISTER 11-6: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

14.1 Input Capture Control Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0			
	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0			
bit 7		1					bit 0			
Legend:		HC = Hardware	e Clearable bit	HS = Hardware Settable bit						
R = Readable	bit	W = Writable b	t	U = Unimple	mented bit, rea	id as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known			
bit 15-14	Unimplemen	ted: Read as '0	,							
bit 13	ICSIDL: Inpu	t Capture x Stop	in Idle Mode Co	ontrol bit						
	1 = Input Ca	, pture x halts in C	PU Idle mode							
	0 = Input Ca	pture x continue	s to operate in C	PU Idle mode						
bit 12-10	ICTSEL<2:0>	Input Capture	x Timer Select b	oits						
	111 = Periph	eral clock (FP) is	the clock sourc	e of ICx						
	110 = Reserv	/ed								
	100 = T1CLK	is the clock sou	rce of ICx (only	the synchrono	us clock is sup	ported)				
	011 = T5CLK	is the clock sou	irce of ICx							
	010 = T4CLK	is the clock sou	Irce of ICx							
	001 = 12CLK	is the clock sol	Irce of ICx							
hit 9-7		ted: Read as '0	,							
bit 6-5		mber of Canture	s ner Interrunt S	elect hits						
	(this field is n	ot used if ICM<2	2:0> = 001 or 11	1)						
	11 = Interrup	ts on every fourt	h capture event							
	10 = Interrup	ts on every third	capture event							
	00 = Interrup	ts on every secc	ure event	it.						
bit 4	ICOV: Input (Capture x Overflo	ow Status Flag b	it (read-only)						
	1 = Input Ca	pture x buffer ov	erflow occurred							
	0 = No Input	Capture x buffe	r overflow occuri	red						
bit 3	ICBNE: Input	t Capture x Buffe	er Not Empty Sta	tus bit (read-o	nly)					
	1 = Input Ca	pture x buffer is	not empty, at lea	ist one more ca	apture value ca	in be read				
		pture x buffer is	empty							
bit 2-0	ICM<2:0>: In	put Capture x M	ode Select bits	unt nin only in		d Idla madaa	(rising odgo			
	detect	capture x function	ontrol bits are no	of applicable)	CPU Sleep an	a late modes	(insing edge			
	110 = Unuse	ed (module disat	oled)	(app.:casic)						
	101 = Captu	re mode, every	16th rising edge	(Prescaler Ca	pture mode)					
	100 = Captu	re mode, every 4	th rising edge (Prescaler Capi	ture mode)					
	011 = Captu 010 = Captu	re mode, every l	alling edge (Sim	pie Capture m ple Capture m	lode)					
	001 = Captu	re mode, every e	edge, rising and	falling (Edge D	etect mode, IC	I<1:0>), is not	t used in this			
	mode))								
	000 = Input	Capture x modul	e is turned off							

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER

U-0	U-0	U-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable b	it
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	SESTAT: Special Event Interrupt Status bit
	 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWM cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI2/SYNCO2 polarity is inverted (active-low)0 = SYNCI2/SYNCO2 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO2 output is enabled0 = SYNCO2 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾
	111 = Reserved
	•
	•
	100 = Reserved
	$011 = PTGO17^{(2)}$
	$010 = PTGO16^{(2)}$
	000 = SYNCI1
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of

- application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

NOTES:

FIGURE 17-1: QEIX BLOCK DIAGRAM

JSPIC33EPXXXGM3XX/6XX/7XX

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receive buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) for information on enabling the UART module for transmit operation.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26 ⁽¹⁾	CSS25 ⁽¹⁾	CSS24 ⁽¹⁾
bit 15							bit 8
	5444.0	D 444 A	DAMA	D 444 0	5444.0	D 444 0	D 444 A
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
DIT 7							Dit U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unki	nown
bit 15	CSS31: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 14	CSS30: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 13	CSS29: ADC	x Input Scan Se	election bits				
	1 = Selects A	Nx for input sca	an				
	0 = Skips AN	x for input scan					
bit 12	CSS28: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 11	CSS27: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 10	CSS26: ADC	x Input Scan Se	election bit ⁽¹⁾				
	1 = Selects C 0 = Skips OA	A3/AN6 for inp 3/AN6 for input	ut scan scan				
bit 9	CSS25: ADC	x Input Scan Se	election bit ⁽¹⁾				
	1 = Selects C	A2/AN0 for inp	ut scan				
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	x Input Scan Se	election bit ⁽¹⁾				
	1 = Selects C 0 = Skips OA	A1/AN3 for inp 1/AN3 for input	ut scan scan				
bit 7	CSS23: ADC	x Input Scan Se	election bit				
	1 = Selects A	Nx for input sca	an				
	0 = Skips AN	x for input scan					
bit 6	CSS22: ADC	x Input Scan Se	election bits				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 5	CSS21: ADC	x Input Scan Se	election bits				
	1 = Selects A	Nx for input sca	an				
		x ior input scan					
Note 1. If th	ne on amn is se	lected (OPMOI	OF hit (CMxC(N < 10 > 1 = 1	the OAx input is	s used: otherw	ise the ANx

REGISTER 23-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾

- **Note 1:** If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDT0	
bit 7		•	•				bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-13 bit 12-8	PTGCLK<2:0 111 = Reserv 110 = Reserv 101 = PTG m 100 = PTG m 011 = PTG m 010 = PTG m 001 = PTG m 000 = PTG m PTGDIV<4:02 11111 = Divic 00001 = Divic 00001 = Divic	 Select PTG red red nodule clock so PTG Module de-by-32 de-by-31 	Module Clock urce will be T3 urce will be T2 urce will be T4 urce will be T4 urce will be F6 urce will be F6 clock Presca	Source bits CLK CLK CLK D SC Ier (divider) bi	ts			
bit 7-4	<pre>PTGPWD<3:0>: PTG Trigger Output Pulse-Width bits 1111 = All trigger outputs are 16 PTG clock cycles wide 1110 = All trigger outputs are 15 PTG clock cycles wide</pre>							
bit 2-0		0>: Select PTG	~ Watchdog Tir	mer Time-out	Count Value hits	3		
UIL 2-U	Unimplemented: Read as '0' PTGWDT<2:0>: Select PTG Watchdog Timer Time-out Count Value bits 111 = Watchdog Timer will time-out after 512 PTG clocks 100 = Watchdog Timer will time-out after 128 PTG clocks 101 = Watchdog Timer will time-out after 64 PTG clocks 100 = Watchdog Timer will time-out after 32 PTG clocks 011 = Watchdog Timer will time-out after 32 PTG clocks 011 = Watchdog Timer will time-out after 16 PTG clocks 010 = Watchdog Timer will time-out after 16 PTG clocks 010 = Watchdog Timer will time-out after 8 PTG clocks 001 = Watchdog Timer will time-out after 8 PTG clocks 001 = Watchdog Timer will time-out after 8 PTG clocks							

REGISTER 25-2: PTGCON: PTG CONTROL REGISTER

TABLE 33-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SY00	Τρυ	Power-up Period	_	400	600	μs		
SY10	Tost	Oscillator Start-up Time		1024 Tosc	_	_	Tosc = OSC1 period	
SY12	Twdt	Watchdog Timer Time-out Period	0.85	—	1.15	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, Using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C	
			3.4		4.6	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, Using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C	
SY13	Tioz	I/O H <u>igh-Im</u> pedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs		
SY20	TMCLR	MCLR Pulse Width (low)	2	—	_	μs		
SY30	TBOR	BOR Pulse Width (low)	1	—	_	μs		
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C	
SY36	TVREG	Voltage Regulator Standby-to-Active Mode Transition Time		—	30	μs		
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	_	—	29	μs		
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μs		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

TABLE 33-40: SPI1 MAXIMUM DATA/CLOCK RATE SUMMAR)	TABLE 33-40:	SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY
---	--------------	--------------------------------------

AC CHARA	CTERISTICS	$\label{eq:constraint} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 33-41	—	_	0,1	0,1	0,1	
25 MHz	_	Table 33-42		1	0,1	1	
25 MHz	—	Table 33-43		0	0,1	1	
25 MHz	—	—	Table 33-44	1	0	0	
25 MHz	—	—	Table 33-45	1	1	0	
25 MHz	_	_	Table 33-46	0	1	0	
25 MHz	_	_	Table 33-47	0	0	0	

FIGURE 33-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC	_	
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B