

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm710-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin #	Full Pin Name	Pin #	Full Pin Name
1	TDO/PWM4H/PMD4/RA10	E8	AN47/INT4/RA15
2	RPI45/PWM2L/CTPLS/PMD3/RB13	E9	RPI72/RD8
.3	RP125/RG13	E10	PGED2/ASDA2/RP37/RB5
4	RP42/PWM3H/PMD0/RB10	E11	AN46/INT3/RA14
A5	RPI112/RG0	F1	MCLR
A6	RP97/RF1	F2	AN17/ASDA1/RP120/PMA3/RG8
A7	VDD	F3	AN16/RPI121/PMA2/RG9
A8	No Connect	F4	AN18/ASCL1/RPI119/PMA4/RG7
A9	RPI76/RD12	F5	Vss
A10	RP54/RC6	F6	No Connect
A11	TMS/OA5IN-/AN27/C5IN1-/RP41/RB9	F7	No Connect
B1	No Connect	F8	VDD
B2	AN23/RP127/RG15	F9	AN49/OSC1/CLKI/RPI60/RC12
B3	RPI44/PWM2H/PMD2/RB12	F10	Vss
B4	RP43/PWM3L/PMD1/RB11	F11	OSC2/CLKO/RPI63/RC15
B5	RF7	G1	AN21/RE8
B6	RPI96/RF0	G2	AN20/RE9
B7	VCAP	G3	AN22/RG10
B8	RP69/PMRD/RD5	G4	No Connect
B9	RP55/PMBE/RC7	G5	VDD
310	Vss	G6	Vss
311	TCK/AN26/CVREF10/SOSCO/RP40/T4CK/RB8	G7	Vss
C1	RPI46/PWM1H/T3CK/T7CK/PMD6/RB14	G8	No Connect
C2	VDD	G9	AN45/RF5
C3	RPI124/RG12	G10	AN43/RG3
C4	RP126/RG14	G11	AN44/RF4
C5	RF6	H1	AN10/RPI28/RA12
C6	No Connect	H2	AN9/RPI27/RA11
C7	RP57/RC9	H3	No Connect
C8	RP56/PMWR/RC8	H4	No Connect
C9	No Connect	H5	No Connect
C10	SOSCI/RPI61/RC13	H6	VDD
C11	AN48/CVREF20/RPI58/PMCS1/RC10	H7	No Connect
D1	PWM5L/RD1	H8	AN28/SDI1/RPI25/RA9
D2	RPI47/PWM1L/T5CK/T6CK/PMD7/RB15	H9	AN29/SCK1/RPI51/RC3
D3	TDI/PWM4L/PMD5/RA7	H10	AN31/SCL1/RPI53/RC5
D4	No Connect	H11	AN42/RG2
D5	No Connect	J1	OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0
D6	No Connect	J2	OA2IN+/AN1/C2IN3-/C2IN1+/RPI17/RA1
D7	RP70/RD6	J3	PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RTCC/R
D8	RPI77/RD13	J4	AVDD
D9	OA5OUT/AN25/C5IN4-/RP39/INT0/RB7	J5	AN11/C1IN2-/U1CTS/FLT4/PMA12/RC11
10	No Connect	J6	AN35/RG11
			AN12/C2IN2-/C5IN2-/U2RTS/BCLK2/FLT5/PMA11/R

TABLE 2: PIN NAMES: dsPIC33EP128/256/512GM310/710 DEVICES ^{(1,2}

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select (PPS)" for available peripherals and for information on limitations.

Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
 The availability of I²C[™] interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 30.0 "Special Features" for more information.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGM3XX/6XX/7XX family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	connected		indep	endent	of	the	ADC
	volta	ge refe					

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000							1	W0 (WR	EG)			•			I		xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	0008		W4 2											xxxx				
W5	000A		W5											xxxx				
W6	000C		W6											xxxx				
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A		W13 x2										xxxx					
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLI	N								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	.H								0000
ACCAU	0026			Się	gn Extensio	n of ACCA<	39>						ACO	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Się	gn Extensio	n of ACCB<	39>						ACO	CBU				0000
PCL	002E			-			Pr	ogram Cour	nter Low Wo	rd Register							—	0000
PCH	0030	_	—	—	_	_	_	—	—	—		Pr	ogram Cou	unter High V	Vord Regist	ter		0000
DSRPAG	0032	_	—	—	—	_	—				Data S	pace Read	l Page Reg	gister				0001
DSWPAG	0034	_	—	—	—	—	—	—			0	Data Space	Write Pag	e Register				0001
RCOUNT	0036							REPE	AT LOOP CO	ount Registe	er							0000
DCOUNT	0038								DCOUNT<	:15:0>								0000
DOSTARTL	003A							DOS	TARTL<15:1	>							—	0000
DOSTARTH	003C	-		—	—	—	-	_	—	_	—			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DO	ENDL<15:1>	>							_	0000
DOENDH	0040	-		—	_	_	-	—	—	_	—			DOEN	DH<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000689D-page 46

TABLE 4-42: CTMU REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG		—		-	_	—	-	-	0000
CTMUCON2	2 033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	-	—	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		-			_	—			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: JTAG INTERFACE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	—	_	_	_		JDATAH<27:16> x							xxxx				
JDATAL	0FF2					JDATAL<15:0>							0000					

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window Based on ALRMPTR<1:0>										xxxx					
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624		RTCC Value Register Window Based on RTCPTR<1:0>									xxxx						
RCFGCAL	0626	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADR	U<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** Nonvolatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

'1' = Bit is set

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAE)R<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

bit 15-0 **NVMADR<15:0>:** Nonvolatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

 bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device was in Sleep mode

 0 = Device was not in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device was in Idle mode

 0 = Device was not in Idle mode

 0 = Device was not in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

bit 0 **POR:** Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit (read/clear by application) ⁽⁵⁾
	1 = FSCM has detected clock failure0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enables Secondary Oscillator (SOSC)0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS70580), available from the Microchip web site for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This register resets only on a Power-on Reset (POR).
 - 4: Secondary Oscillator (SOSC) selection is valid on 64-pin and 100-pin devices, and defaults to FRC/N on 44-pin devices.
 - 5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To _complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Watchdog Timer and Power-Saving Modes" (DS70615), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

The dsPIC33EPXXXGM3XX/6XX/7XX devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGM3XX/6XX/7XX devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGM3XX/6XX/7XX devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the Assembler Include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				SYNCI1R<6:0)>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	—	—		—		
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set	it is set '0' = Bit is cleared x = Bit is unknown				iown	
bit 15	Unimplemer	nted: Read as 'o	0'					
bit 14-8		SYNCI1R<6:0>: Assign PWM Synchronization Input 1 to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)						
	1111100 = Input tied to RPI124							
	•							
	•							
	•	nout tigd to CM	D1					
		nput tied to CMI nput tied to Vss						
bit 7-0		nted: Read as '						
	ompleme		0					

REGISTER 11-25: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

			(1)
REGISTER 11-42:	RPOR12: PERIPHERAL	PIN SELECT OUTPUT	REGISTER 12 ⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-			RP127R	-		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP126R	<5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleare	ed	x = Bit is unkr	nown
bit 15-14	Unimplem	ented: Read as '	0'				
bit 13-8	RP127R<5:0>: Peripheral Output Function is Assigned to RP127 Output Pin bits (see Table 11-3 for peripheral function numbers)						
bit 7-6	Unimplemented: Read as '0'						
bit 5-0	RP126R<5:0>: Peripheral Output Function is Assigned to RP126 Output Pin bits (see Table 11-3 for peripheral function numbers)						

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

NOTES:

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = Capture timer is unsynchronized
 - 11110 = Capture timer is unsynchronized
 - 11101 = Capture timer is unsynchronized
 - 11100 = CTMU trigger is the source for the capture timer synchronization
 - 11011 = ADC1 interrupt is the source for the capture timer synchronization⁽⁵⁾
 - 11010 = Analog Comparator 3 is the source for the capture timer synchronization⁽⁵⁾
 - 11001 = Analog Comparator 2 is the source for the capture timer synchronization⁽⁵⁾
 - 11000 = Analog Comparator 1 is the source for the capture timer synchronization⁽⁵⁾
 - 10111 = Input Capture 8 interrupt is the source for the capture timer synchronization
 - 10110 = Input Capture 7 interrupt is the source for the capture timer synchronization 10101 = Input Capture 6 interrupt is the source for the capture timer synchronization
 - 10100 = Input Capture 5 interrupt is the source for the capture timer synchronization
 - 10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
 - 10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
 - 10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
 - 10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
 - 01111 = GP Timer5 is the source for the capture timer synchronization
 - 01110 = GP Timer4 is the source for the capture timer synchronization
 - 01101 = GP Timer3 is the source for the capture timer synchronization 01100 = GP Timer2 is the source for the capture timer synchronization
 - 01100 = GP Timer2 is the source for the capture timer synchronization 01011 = GP Timer1 is the source for the capture timer synchronization
 - 01011 GF finite is the source for the capture timer synchronization⁽⁶⁾
 - 01001 = Capture timer is unsynchronized
 - 01000 = Output Compare 8 is the source for the capture timer synchronization
 - 00111 = Output Compare 7 is the source for the capture timer synchronization
 - 00110 = Output Compare 6 is the source for the capture timer synchronization
 - 00101 = Output Compare 5 is the source for the capture timer synchronization
 - 00100 = Output Compare 4 is the source for the capture timer synchronization
 - 00011 = Output Compare 3 is the source for the capture timer synchronization
 - 00010 = Output Compare 2 is the source for the capture timer synchronization
 - 00001 = Output Compare 1 is the source for the capture timer synchronization
 - 00000 = Capture timer is unsynchronized
- **Note 1:** The IC32 bit in both the Odd and Even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x module (ICx) has one PTG input source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1, IC5
 PTGO9 = IC2, IC6
 PTGO10 = IC3, IC7
 PTGO11 = IC4, IC8

bit 15 text of the set	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT1 CLDAT1 CLDAT1 CLDAT0 SWAP OSYNC bit 7 E E CLDAT1 CLDAT0 SWAP OSYNC Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' r. -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PENH: PWMxH Output Pin Ownership bit 1 = PWMx module controls the PWMxH pin 0 GO module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin 0 GO module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin 0 PO module controls the PWMxL pin 0 0 = GPIO module controls the PWMxL pin 0 PWMxL pin is active-low 0 PWMxL PWMxH Output Pin Polarity bit 1 = PWMx pin is active-low 0 PWMxL (D pin pair is in the True Independent Output mode 0 PWMxL (D'D pin pair is in the True Independent Output mode 0 PWMxL (D'D pin pair is in Redundant Output mode 0 PWMxL (D'D pin pair is	PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC bit 7	bit 15							bit 8
OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC bit 7	P/M/O	P///_0	P/M/0	PM/0	P/M/O	P/M/0		P/M/-0
bit 7 to the set of t		-		-	-	-	-	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PENH: PWMxH Output Pin Ownership bit 1 = PWMx module controls the PWMxH pin x = Bit is unknown bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin o = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin o = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low o = GPIO module controls the PWMxL pin bit 12 POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-high		OVRDATU	FLIDAII	FLIDAIU	CLDATT	CLDATU	SWAP	bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PENH: PWMxH Output Pin Ownership bit 1 = PWMx module controls the PWMxH pin x = Bit is unknown bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin o = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin o = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low o = GPIO module controls the PWMxL pin bit 12 POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-high								
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PENH: PWMxH Output Pin Ownership bit 1 = PWMx module controls the PWMxH pin 0 = GPIO module controls the PWMxH pin bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = PWMxL pin is active-low 0 = PWMxH pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMx loy pin pair is in Complementary Output mode 0 = PWMx loy pin pair is	Legend:							
 bit 15 PENH: PWMxH Output Pin Ownership bit = PWMx module controls the PWMxH pin GPIO module controls the PWMxH pin = GPIO module controls the PWMxL pin = PENL: PWMxL Output Pin Ownership bit = PWMx module controls the PWMxL pin GPIO module controls the PWMxL pin = GPIO module controls the PWMxL pin = GPIO module controls the PWMxL pin = PWMxH pin is active-low = PWMxH pin is active-low = PWMxL (Dip in pair is in the True Independent Output mode = PWMx I/O pin pair is in Push-Pull Output mode = PWMx I/O pin pair is in Redundant Output mode = PWMx I/O pin pair is in Redundant Output mode = PWMx I/O pin pair is in Complementary Output mode = PWMx I/O pin pair is in Redundant Output mode = PWMx I/O pin pair is no complementary Output mode = PWMx I/O pin pair is no the PWMxH pin = OVRDAT-1> controls the output on the PWMxH pin = PWMx generator controls the PWMxL pin = PWMx generator controls the tate specified by OVRDAT<1>. If OVERENL = 1, PWMxH is driven to the state specified by OVRDAT<2. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<2>. If Fault is active, PWMxH and PWMxL Pins if CLMOD is Enabled bits If output-1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>. 	R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
1 = PWMx module controls the PWMxH pin 0 = GPI0 module controls the PWMxH pin bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin 0 = GPI0 module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = OPUMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Red-Indant Output mode 0 = PWMx I/O pin pair is in Red-Indant Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in PWMxH Pin bit 1 = OVRDAT<>> controls the OWMxL Pin bit 1 = OVRDAT<>> controls the OWMxL Pin bit 1	-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
1 = PWMx module controls the PWMxH pin 0 = GPI0 module controls the PWMxH pin bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin 0 = GPI0 module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = OPUMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Red-Indant Output mode 0 = PWMx I/O pin pair is in Red-Indant Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in PWMxH Pin bit 1 = OVRDAT<>> controls the OWMxL Pin bit 1 = OVRDAT<>> controls the OWMxL Pin bit 1	bit 15	PENH: PWM	xH Output Pin	Ownership bit				
bit 14 PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = PWMxL (O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Redundant Output mode 0 = PWMx I/O pin pair is in Redundant Output mode 0 = PWMx I/O pin pair is in Redundant Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in the PWMxH pin 0 = PWMx generator controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin <		1 = PWMx mo	odule controls	the PWMxH p	in			
 1 = PWMx module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin 1 = PWMxH pin is active-low 0 = PWMxL pin is active-high bit 11-10 PMOD<1:0>: PWMx I/O Pin Mode bits⁽¹⁾ 11 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 0 = PWMx generator controls the OVPMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxL is driven to the state specified by OVRDAT<1>. If AUX generator controls the state specified by OVRDAT<2>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxH and PWMxL Pins if CLMOD is Enabled bits If				•	٦			
0 = GPIO module controls the PWMxL pin bit 13 POLH: PWMxH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = PWMxH pin is active-ligh bit 12 POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL pin is active-low 0 = PWMxL //O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Redundant Output mode 10 = PWMx I/O pin pair is in Redundant Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 0 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode bit 9 OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits if OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. if OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<2>. bit 5-4 FLTDAT<10>: Data for PWMxH and PWMxL Pins if FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits <tr< td=""><td>bit 14</td><td></td><td>•</td><td>•</td><td>-</td><td></td><td></td><td></td></tr<>	bit 14		•	•	-			
 1 = PWMxH pin is active-low 0 = PWMxH pin is active-low 0 = PWMxL pin is active-low 1 = PWMx //O pin pair is in the True Independent Output mode 10 = PWMx //O pin pair is in Push-Pull Output mode 0 = PWMx //O pin pair is in Redundant Output mode 0 = PWMx //O pin pair is in Redundant Output mode 0 = PWMx //O pin pair is in Complementary Output mode 0 = PWMx //O pin pair is in Complementary Output mode 0 = PWMx //O pin pair is in Complementary Output mode 0 = PWMx //O pin pair is in Complementary Output mode bit 9 OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENH = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>. 								
0 = PWMxH pin is active-high bit 12 POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-low 0 = PWMxL pin is active-high bit 11-10 PMOD<1:0>: PWMx # //O Pin Mode bits ⁽¹⁾ 11 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Push-Pull Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 01 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode bit 9 OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL Pin bit 1 = OVRDAT<0> controls the Output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the state specified by OVRDAT<1>. If OVERENL = 1, PWMxH is driven to the state specified by OVRDAT<0>. bit 7-6 OVRDAT<1.0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxL is driven to th	bit 13	POLH: PWM	xH Output Pin	Polarity bit				
bit 12 POLL: PWMxL Output Pin Polarity bit 1 = PWMxL pin is active-low 0 = PWMxL pin is active-high bit 11-10 PMOD<1:0>: PWMx # I/O Pin Mode bits ⁽¹⁾ 11 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Push-Pull Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Complementary Output mode bit 9 OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMxL is driven to the state specified by OVRDAT<1>. If OVERENH = 1, PWMxL is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxL is driven to the state specified by FLTDAT<1>.								
 1 = PWMxL pin is active-low 0 = PWMxL pin is active-high PMOD<1:0>: PWMx # I/O Pin Mode bits⁽¹⁾ 11 = PWMx I/O pin pair is in the True Independent Output mode 0 = PWMx I/O pin pair is in Push-Pull Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx generator controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxL pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pins if Override is Enabled bits If OVERENL = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>. 	hit 10	-	-					
 bit 11-10 PMOD<1:0>: PWMx # I/O Pin Mode bits⁽¹⁾ 11 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Push-Pull Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx generator controls the OWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pins if Override is Enabled bits If OVERENL = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is act	DIL 12		•					
bit 11-10 PMOD<1:0>: PWMx # I/O Pin Mode bits ⁽¹⁾ 11 = PWMx I/O pin pair is in the True Independent Output mode 10 = PWMx I/O pin pair is in Push-Pull Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Complementary Output mode 00 = PWMx I/O pin pair is in Complementary Output mode bit 9 OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxH pin bit 8 OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENL = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxH is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxL is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by CLDAT<1>.		•						
10 = PWMx I/O pin pair is in Push-Pull Output mode 01 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Complementary Output mode bit 9 OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxH pin bit 8 OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.	bit 11-10	•	•)			
01 = PWMx I/O pin pair is in Redundant Output mode 00 = PWMx I/O pin pair is in Complementary Output modebit 9OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxH pin 						ut mode		
00 = PWMx I/O pin pair is in Complementary Output mode bit 9 OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxH pin bit 8 OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.								
bit 9OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxH pinbit 8OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pinbit 7-6OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>.bit 5-4FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxL is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxH and PWMxL Pins if CLMOD is Enabled bits If Fault is active, PWMxH and PWMxL Pins if CLMOD is Enabled bits If Fault is active, PWMxH and PWMxL Pins if CLMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<0>.bit 3-2CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.						de		
 1 = OVRDAT<1> controls the output on the PWMxH pin 0 = PWMx generator controls the PWMxH pin bit 8 OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>. 	hit 9			•		ac		
0 = PWMx generator controls the PWMxH pin bit 8 OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin 0 = PWMx generator controls the PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<1>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.	Sit 0							
1 = OVRDAT<0> controls the output on the PWMxL pin 0 = PWMx generator controls the PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<1>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.								
0 = PWMx generator controls the PWMxL pin bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.	bit 8	OVRENL: Ov	erride Enable	for PWMxL Pi	n bit			
bit 7-6 OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.		1 = OVRDAT<0> controls the output on the PWMxL pin						
If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>. If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.	bit 7-6	•						
bit 5-4 FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.		If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>.						
If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>. bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.	bit 5-4							
bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.								
If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.	bit 3-2							
If current limit is active, PWMxL is driven to the state specified by CLDAT<0>.		If current limit	is active, PW	AxH is driven	to the state spe	ecified by CLDA	.T<1>.	
Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).						-		

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 17-6: POSxHLD: POSITION COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **POSHLD<15:0>:** Holding Register for Reading and Writing POSxCNT bits

REGISTER 17-7: VELxCNT: VELOCITY COUNTER x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
L							

bit 15-0 VELCNT<15:0>: Velocity Counter x bits

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1		
bit 15							bit 8		
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0		
bit 7							bit 0		
Legend:									
R = Readabl		W = Writable		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown			
bit 15-10	EID<5:0>: E	xtended Identifi	er bits						
bit 9	RTR: Remot	e Transmission	Request bit						
	When IDE = 1:								
	1 = Message will request remote transmission								
	0 = Normal message								
	<u>When IDE = 0:</u> The RTR bit is ignored.								
bit 8	RB1: Reserved Bit 1								
	User must se	User must set this bit to '0' per CAN protocol.							
bit 7-5	Unimplemer	Unimplemented: Read as '0'							
bit 4	RB0: Reserv	ed Bit 0							
	User must se	et this bit to '0' p	er CAN proto	ocol.					
		-							

BUFFER 21-3: CANx MESSAGE BUFFER WORD 2

bit 3-0	DLC<3:0>: Data Length Code bits
	Dec C.C. Duta Longin Code Dite

BUFFER 21-4: CANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	1<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	0<7:0>			
bit 7							bit 0
Logondi							
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit,		ad as '0'		
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 Byte 1<15:8>: CANx Message Byte 1

bit 7-0 Byte 0<7:0>: CANx Message Byte 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15	•	•		•	•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—
bit 7	•	•		•	•		bit 0
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit			
	•	edge-sensitive					
	•	level-sensitive					
bit 14		dge 1 Polarity					
		programmed f programmed f					
bit 13-10	-	:0>: Edge 1 So	-				
DIL 13-10	1111 = Fosc	0>. Euge 130		5			
	1110 = OSCI	pin					
	1101 = FRC 0						
	1100 = Reser						
	1011 = Intern 1010 = Reser	al LPRC oscilla	itor				
	1010 = Reser 100x = Reser						
	01xx = Reser						
	0011 = CTED						
	0010 = CTED 0001 = OC1 r	•					
	0001 = OCT1						
bit 9		Edge 2 Status b	it				
		-		vritten to contro	I the edge sou	rce.	
	Indicates the status of Edge 2 and can be written to control the edge source. 1 = Edge 2 has occurred						
	0 = Edge 2 ha	as not occurred	1				
bit 8	EDG1STAT: Edge 1 Status bit						
	Indicates the status of Edge 1 and can be written to control the edge source.						
	1 = Edge 1 has occurred 0 = Edge 1 has not occurred						
bit 7	EDG2MOD: Edge 2 Edge Sampling Mode Selection bit						
	1 = Edge 2 is edge-sensitive						
	-	level-sensitive					
bit 6	EDG2POL: E	dge 2 Polarity	Select bit				
		programmed f					
	0 = Edge 2 is	programmed f	or a negative e	edge response			
	he TGEN bit is 0G2SELx bits fi				selected as the	e Edge 2 sourc	e in the

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Clock Source Select bits <u>If SSRCG = 1:</u> 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion <u>If SSRCG = 0:</u> 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion
	101 = PWM secondary Special Event Trigger ends sampling and starts conversion
	100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion
	010 = Timer3 compare ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = $01 \text{ or } 1x$)
	 In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0': 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x), or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADCx Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion; SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADCx Sample Enable bit
	 1 = ADCx Sample-and-Hold amplifiers are sampling 0 = ADCx Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADCx Conversion Status bit ⁽²⁾
	 1 = ADCx conversion cycle is completed. 0 = ADCx conversion has not started or is in progress Automatically set by hardware when A/D conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

2: Do not clear the DONE bit in software if ADCx Sample Auto-Start bit is enabled (ASAM = 1).

REGISTER 23-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾ (CONTINUED)

bit 4	CSS20: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 3	CSS19: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 2	CSS18: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 1	CSS17: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 0	CSS16: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan

- **Note 1:** If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

TABLE 33-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{Fosc}}$$

$$\frac{Fosc}{\sqrt{Time Base or Communication Clock}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 33-18: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic		Тур.	Max.	Units	Conditions			
Internal FRC Accuracy @ FRC Frequency = 7.3728 MHz ⁽¹⁾									
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V		
F20b	FRC	-2	1.5	+2	%	$-40^\circ C \le T_A \le +125^\circ C$	VDD = 3.0-3.6V		

Note 1: Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 33-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
LPRC @ 32.768 kHz									
F21a	LPRC	-15	5	+15	%	$-40^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V		
F21b	LPRC	-30	10	+30	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

^{© 2013-2014} Microchip Technology Inc.

TABLE 33-39:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	—		11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_		ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	—	—	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.