

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm710-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

Pin Diagrams

TABLE 4-1:	CPU CORE REGISTER MAP	(CONTINUED)
------------	-----------------------	-------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	—	US1	US0	EDT	DL1	DL2	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048		XMODSRT<15:0> XMODEND<15:0>													_	0000	
XMODEND	004A		XMODEND<15:0>														_	0001
YMODSRT	004C		YMODSRT<15:0>														_	0000
YMODEND	004E							YMC	DEND<15:0)>							_	0001
XBREV	0050	BREN							XBF	REV<14:0>								0000
DISICNT	0052	_	— — DISICNT<13:0>													0000		
TBLPAG	0054	_	TBLPAG<7:0>												0000			
MSTRPR	0058		MSTRPR<15:0>													0000		

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PWM GENERATOR 6 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON6	0000	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON6	0CC2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON6	0CC4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC6	0CC6								PDC6	<15:0>								0000
PHASE6	0CC8								PHASE	6<15:0>								0000
DTR6	0CCA	_	_							DTR6	<13:0>							0000
ALTDTR6	00000	_	_							ALTDTF	6<13:0>							0000
SDC6	0CCE								SDC6	<15:0>								0000
SPHASE6	0CD0								SPHASE	6<15:0>								0000
TRIG6	0CD2								TRGCM	P<15:0>								0000
TRGCON6	0CD4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP6	0CD8								PWMCA	P6<15:0>								0000
LEBCON6	0CDA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY6	0CDC	_	_	_	_						LEB<	11:0>						0000
AUXCON6	0CDE	_	_	—	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: CTMU REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	—	—	—	—		—	_	_	0000
CTMUCON2	033C	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		_	0000
CTMUICON	033E	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	_	_	_	_	_	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: JTAG INTERFACE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0		_	_	_	JDATAH<27:16>											xxxx	
JDATAL	0FF2					JDATAL<15:0> 00										0000		

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620	Alarm Value Register Window Based on ALRMPTR<1:0>															xxxx	
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624		RTCC Value Register Window Based on RTCPTR<1:0>												xxxx			
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,3,4)
 - 1111 = Reserved
 - 1110 = Reserved
 - 1101 = Bulk erase primary program Flash memory
 - 1100 = Reserved
 - 1011 = Reserved
 - 1010 = Reserved
 - 0011 = Memory page erase operation
 - 0010 = Memory row program operation with source data from RAM
 - 0001 = Memory double-word program operation⁽⁵⁾
 - 0000 = Reserved
- Note 1: These bits can only be reset on POR.
 - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
 - **3:** All other combinations of NVMOP<3:0> are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
 - 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access (DMA)" (DS70348), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM

In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare
- DCI
- PMP
- Timers

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

REGISTER 8-2: DMAXREQ: DMA CHANNEL X IRQ SELECT REGISTER

D/S 0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
	0-0	0-0	0-0	0-0	0-0	0-0	0-0
FURCE	—	—		_		_	—
DIT 15							DIT 8
]
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0
bit 7							bit 0
Legend:		S = Settable b	bit				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	FORCE: Forc	e DMA Transfe	er bit ⁽¹⁾				
	1 = Forces a	single DMA tra	insfer (Manua	I mode)			
	0 = Automatio	c DMA transfer	initiation by D	DMA request			
bit 14-8	Unimplement	ted: Read as ')'				
bit 7-0	IRQSEL<7:0>	-: DMA Periphe	eral IRQ Num	ber Select bits			
	01011011 = \$	SPI3 – Transfe	r done				
	01011001 =	UART4TX – U/	ART4 transmit	tter			
	01011000 =	UART4RX – U	ART4 receiver	r			
	01010011 =	UART3TX – U/	ART3 transmit	tter			
	01010010 =	UART3RX – U	ART3 receiver	r			
	01000111 = 0	CAN2 – TX dat	a request				
	01000110 = 0	CAN1 – TX dat	a request				
	00111100 = 1	DCI – Codec tr	anster done				
	00110111 = 0	CANZ - RX 0a DMD - DMD da	la ready				
	00101101 = 1	IC4 – Input Ca	oture 4				
	00100101 =	IC3 – Input Ca	oture 3				
	00100010 = 0	CAN1 – RX da	ta ready				
	00100001 = \$	SPI2 – SPI2 tra	ansfer done				
	00011111 =	UART2TX – U/	ART2 transmit	tter			
	00011110 =	UART2RX – U	ART2 receive	r			
	00011100 =	TMR5 – Timer	5				
	00011011 =	TMR4 – Timer4	1				
	00011010 = 0	OC4 – Output	Compare 4				
	00011001 = 0		Compare 3				
	00010101 = 1		convert done				
	00001101 = 1	HART1TX - H	ART1 transmit	ter			
	00001100 = 00001011 = 10000000000000000	UART1RX - U	ART1 receiver	r			
	00001010 = 3	SPI1 – SPI1 tra	ansfer done				
	00001000 =	TMR3 – Timer3	3				
	00000111 =	TMR2 – Timer2	2				
	00000110 = 0	OC2 – Output	Compare 2				
	00000101 =	IC2 – Input Ca	oture 2				
	00000010 = 0	OC1 – Output	Compare 1				
	0000001 =	IC1 – Input Ca	oture 1				
	00000000 = I	IN I U – Externa	i interrupt 0				

Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

© 2013-2014 Microchip Technology Inc.

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	_	_		—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
	_	_	—		LSTCI	H<3:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplement	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	Last DMA Co	ntroller Chan	nel Active Statu	us bits		
	1111 = No DM 1110 = Reser	MA transfer has ∿ed	s occurred sir	nce system Res	set		
	•						
	•						
	•						
	0100 = Reser 0011 = Last d 0010 = Last d 0001 = Last d	ved lata transfer wa lata transfer wa lata transfer wa	as handled by as handled by as handled by	Channel 3 Channel 2 Channel 1			

0000 = Last data transfer was handled by Channel 0

9.1 CPU Clocking System

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices provides seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- · Secondary (LP) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FSYS).

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where:

N1 = PLLPRE<4:0> + 2 N2 = 2 x (PLLPOST<1:0> + 1) M = PLLDIV<8:0> + 2

EQUATION 9-3: Fvco CALCULATION

 $FSYS = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2)}\right)$

11.5 High-Voltage Detect

The dsPIC33EPXXXGM3XX/6XX/7XX devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tri-state condition. The device remains in this I/O tristate condition as long as the high-voltage condition is present.

11.6 I/O Helpful Tips

- In some cases, certain pins, as defined in Table 33-10 under "Injection Current", have internal protection diodes to VDD and VSs. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in **Section 33.0 "Electrical Characteristics"** for additional information.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				C2RXR<6:0>	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				C1RXR<6:0>	>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8	C2RXR<6:0 (see Table 1	 Assign CAN2 1-2 for input pin 	RX Input (C selection nur	2RX) to the Cor mbers)	responding R	Pn Pin bits	
	1111100 =	nput tied to RP	124				
	•						
	•						
	0000001 =	nput tied to CM	P1				
	0000000 =	nput tied to Vss	8				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	C1RXR<6:0	>: Assign CAN1	RX Input (C	1RX) to the Cor	responding R	Pn Pin bits	
	(see Table 1	1-2 for input pin	selection nur	mbers)			
	1111100 =	nput tied to RP	124				
	•						
	•						
	0000001 =	nput tied to CM	P1				
	0000000 =	nput tied to Vss	3				

REGISTER 11-20: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

Note 1: This register is not available on dsPIC33EPXXXGM3XX devices.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

- bit 6-4
 SYNCSRC<2:0>: Synchronous Source Selection bits⁽¹⁾

 111 = Reserved
 ...

 ...
 ...

 100 = Reserved
 011 = PTGO17⁽²⁾

 010 = PTGO16⁽²⁾
 001 = Reserved

 000 = SYNCI1
 SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾

 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...
- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 - 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
 - 0 = PWMxH and PWMxL pins are mapped to their respective pins
- bit 0 OSYNC: Output Override Synchronization bit
 - 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- **Note 1:** These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-20: TRIGX: PWMX PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADCx module.

17.1 QEI Control Registers

REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN	—	QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ^(2,4)	IMV0 ^(2,4)
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	
—	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0	
bit 7							bit 0	

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	QEIEN: QEIx Module Counter Enable bit
	 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to
bit 14	Unimplemented: Read as '0'
bit 13	QEISIDL: QEIx Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-10	PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾
	111 = Reserved
	110 = Modulo Count mode for position counter
	 101 = Resets the position counter when the position counter equals the QEIxGEC register 100 = Second index event after home event initializes the position counter with contents of the QEIxIC register
	011 = First index event after home event initializes the position counter with contents of the QEIxIC register
	010 = Next index input event initializes the position counter with contents of the QEIxIC register
	001 = Every index input event resets the position counter 000 = Index input event does not affect position counter
bit 9-8	IMV<1:0>: Index Match Value bits ^(2,4)
	 1 = Required state of Phase B input signal for match on index pulse 0 = Required state of Phase A input signal for match on index pulse
bit 7	Unimplemented: Read as '0'
Note 1:	When CCM<1:0> = 10 or CCM<1:0> = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEAx and QEBx values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.
- 4: The match value applies to the A and B inputs after the swap and polarity bits have been applied.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
EDG1MO	D EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
EDG2MO	D EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—		
bit 7							bit 0		
·									
Legend:									
R = Readat	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15 bit 14	bit 15EDG1MOD: Edge 1 Edge Sampling Mode Selection bit1 = Edge 1 is edge-sensitive0 = Edge 1 is level-sensitivebit 14EDG1POL: Edge 1 Polarity Select bit								
	0 = Edge 1 is	programmed f	for a negative e	edge response					
bit 13-10	EDG1SEL<3:	: 0>: Edge 1 So	urce Select bits	S					
	1111 = Fosc 1110 = OSCI pin 1101 = FRC oscillator 1100 = Reserved 1011 = Internal LPRC oscillator 1010 = Reserved 100x = Reserved 01xx = Reserved 0011 = CTED1 pin 0010 = CTED2 pin 0011 = OC1 module 0000 = Timer1 module								
bit 9	EDG2STAT: E	Edge 2 Status b	pit						
	Indicates the : 1 = Edge 2 h 0 = Edge 2 h	status of Edge as occurred as not occurred	2 and can be v d	vritten to contro	ol the edge sou	rce.			
bit 8	EDG1STAT: Edge 1 Status bit Indicates the status of Edge 1 and can be written to control the edge source. 1 = Edge 1 has occurred 0 = Edge 1 has not occurred								
bit 7	EDG2MOD: E	Edge 2 Edge Sa	ampling Mode	Selection bit					
	1 = Edge 2 is 0 = Edge 2 is	s edge-sensitive s level-sensitive	9						
bit 6	EDG2POL: E	dge 2 Polarity	Select bit						
	1 = Edge 2 is 0 = Edge 2 is	programmed f programmed f	for a positive en for a negative e	dge response edge response					
Note 1:	If the TGEN bit is EDG2SELx bits fi	set to '1', then eld; otherwise,	the CMP1 module wil	dule should be Il not function.	selected as the	e Edge 2 sourc	e in the		

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽³⁾
	11 = Trigger/event/interrupt generated on any change of the comparator output (while $CEVT = 0$)
	10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparatol output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity):
	High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity):
	Low-to-nigh transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled.
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	11 = Inverting input of op amp/comparator connects to CxIN4- pin
	10 = Inverting input of op amp/comparator connects to CXIN3- pin
	00 = Inverting input of op amp/comparator connects to CxIN2- pin
Note 1:	Inputs that are selected and not available will be tied to Vss. See the " Pin Diagrams " section for available

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 30-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R	
			DEVID<	23:16> ⁽¹⁾				
bit 23							bit 16	
R	R	R	R	R	R	R	R	
			DEVID<	:15:8> (1)				
bit 15							bit 8	
R	R	R	R	R	R	R	R	
			DEVID	<7:0> ⁽¹⁾				
bit 7							bit 0	
Legend:	R = Read-Only bit	uv bit U = Unimplemented bit						

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 30-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R R		R				
	DEVREV<23:16>(1)										
bit 23							bit 16				
R	R	R	R	R	R	R	R				
	DEVREV<15:8> ⁽¹⁾										
bit 15							bit 8				
R	R	R	R	R	R	R	R				
			DEVREV	/<7:0> ⁽¹⁾							
bit 7							bit 0				
Legend:	R = Read-only bit	U = Unimplemented bit									

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values. Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles.

Note:	For more	deta	ils on tl	he inst	ructior	n set,	
	refer to	the	"16-bit	MCU	and	DSC	
	Programmer's		Refe	erence	Manual"		
	(DS70157).					

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Dividend, Divisor Working register pair (direct addressing)

TABLE 31-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS

Wm,Wn

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10 Vol		Output Low Voltage 4x Sink Driver Pins ⁽¹⁾	_		0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C},$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$
		Output Low Voltage 8x Sink Driver Pins ⁽²⁾	_		0.4	V	
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽¹⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
		Output High Voltage 8x Source Driver Pins ⁽²⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
DO20A	Von1	Output High Voltage 4x Source Driver Pins ⁽¹⁾	1.5	-	_	V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
			2.0	_	_		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage	1.5	_	_	V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			2.0	_	—		$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
			3.0		—		$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$

TABLE 33-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3>
 For 64-pin devices: RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7>
 For 100-pin devices: RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 33-12: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.7		2.95	V	V _{DD} (Note 2, Note 3)
PO10	VPOR	POR Event on VDD Transition High-to-Low	1.75	_	1.95	V	(Note 2)

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The VBOR specification is relative to VDD.

3: The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized.

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B