

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm710-h-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0		
VAR	_	US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0		
bit 15					·	·	bit 8		
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0		
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF		
bit 7							bit 0		
Legend:		C = Clearable	e bit						
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	VAR: Variable 1 = Variable e 0 = Fixed exc	e Exception Pro exception proce eption process	ocessing Later essing latency sing latency is	ncy Control bit is enabled enabled					
bit 13_12		P Multiply Lips	u ianed/Signed	Control bite					
bit 11	US<1:0>: DSP Multiply Unsigned/Signed Control bits 11 = Reserved 10 = DSP engine multiplies are mixed-sign 01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed EDT: Early DO Loop Termination Control bit ⁽¹⁾ 1 = Terminates executing DO loop at end of current loop iteration								
bit 10-8	DL<2:0>: DO 111 = 7 DO IO	Loop Nesting I ops are active op is active ops are active	∟evel Status b	its					
bit 7	SATA: ACCA 1 = Accumula 0 = Accumula	Saturation En Itor A saturatio Itor A saturatio	able bit n is enabled n is disabled						
bit 6	SATB: ACCB 1 = Accumula 0 = Accumula	Saturation En itor B saturatio itor B saturatio	able bit n is enabled n is disabled						
bit 5	SATDW: Data 1 = Data Spac 0 = Data Spac	a Space Write f ce write satura ce write satura	from DSP Eng tion is enabled tion is disable	iine Saturation ว d	Enable bit				
bit 4	ACCSAT: Acc 1 = 9.31 satur 0 = 1.31 satur	cumulator Satu ration (super sa ration (normal	ration Mode S aturation) saturation)	Select bit					
Note 1: Thi	s bit is always r	ead as '0'.							

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

TABLE 4-46: PORTA REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

								1			1		1		1		(1
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	TRISA	<15:14>	_			TRISA<	12:7>			—	—	TRISA4	-	—	TRISA	<1:0>	DF9F
PORTA	0E02	RA<1	5:14>	_			RA<12	2:7>			_	_	RA4	_	_	RA<	1:0>	0000
LATA	0E04	LATA<	15:14>	_		LATA<12:7>					_	_	LATA4	_	_	LATA	LATA<1:0>	
ODCA	0E06	ODCA<	<15:14>	_			ODCA<	12:7>			_	_	ODCA4	_	_	ODCA	<1:0>	0000
CNENA	0E08	CNIEA	<15:14>	_			CNIEA<	12:7>			_	_	CNIEA4	_	_	CNIEA	<1:0>	0000
CNPUA	0E0A	CNPUA	<15:14>	_			CNPUA<	:12:7>			_	_	CNPUA4	_	_	CNPU	4<1:0>	0000
CNPDA	0E0C	CNPDA	<15:14>			CNPDA<12:7>				_	_	CNPDA4	_	_	CNPD	4<1:0>	0000	
ANSELA	0E0E	ANSA<	<15:14>	_	ANSA<	12:11>		ANSA9	_	_	_	_	ANSA4		_	ANSA	<1:0>	1813

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTA REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
TRISA	0E00		—	_		TRISA<12:7>						—	TRISA4	_	—	TRISA	TRISA<1:0>		
PORTA	0E02	—	—	_			RA<12	:7>			_	_	RA4	-	—	RA<	1:0>	0000	
LATA	0E04	—	_				LATA<1	2:7>			_	_	LATA4		_	LATA	<1:0>	0000	
ODCA	0E06	—	—	_			ODCA<	12:7>			_	—	ODCA4	-	—	ODCA	<1:0>	0000	
CNENA	0E08	—	—				CNIEA<	12:7>			—	_	CNIEA4		_	CNIEA	<1:0>	0000	
CNPUA	0E0A	—	_			CNPUA<12:7>					_	_	CNPUA4		_	CNPU	4<1:0>	0000	
CNPDA	0E0C	—	—			CNPDA<12:7>					_	—	CNPDA4		—	CNPD	4<1:0>	0000	
ANSELA	0E0E	_	_		ANSA<	12:11>	_	ANSA9	_		_	_	ANSA4		_	ANSA	<1:0>	1813	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTA REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_	_		TRISA<10:7>		_	_		-	TRISA<4:0>			DF9F	
PORTA	0E02	_	_	_	-	—		RA<10:7>		—	_		RA<4:0>				0000	
LATA	0E04	_	_	_	_	—		LATA<10:7>			—	_	LATA<4:0>					0000
ODCA	0E06	_	_	_	_	—		ODCA.	<10:7>		—	_		(ODCA<4:0	>		0000
CNENA	0E08	—	_	—	—	—		CNIEA	<10:7>		_	—	CNIEA<4:0>			0000		
CNPUA	0E0A	_	_	_	_	—		CNPUA<10:7>		—	_		C	NPUA<4:0	>		0000	
CNPDA	0E0C	_	_	_	_	_	CNPDA<10:7>		_	_	CNPDA<4:0>			0000				
ANSELA	0E0E	_	_	_	_	_	_	ANSA9	_	_	_	_	ANSA4	_		ANSA<2:0>	>	1813

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
—	—	—	—	ILR3	ILR2	ILR1	ILR0					
bit 15							bit 8					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0					
bit 7							bit C					
Legend:												
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'												
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-12	Unimplemen	ted: Read as '	0'									
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits								
	1111 = CPU	Interrupt Priorit	ty Level is 15									
	•											
	•											
		Interrupt Drierit	hulovolio 1									
	0001 = CPU	Interrupt Priori	ty Level is 0									
bit 7-0	VECNUM<7:	0>: Vector Nun	nber of Pendin	a Interrupt bits	3							
	111111111 =	255. Reserved	: do not use	.g								
	•	,	,									
	•											
	•											
	00001001 =	9, IC1 – Input (Capture 1									
	00001000 =	8, INTU – EXTE	rnal Interrupt (J								
	00000111 =	7, Reserved; d	o not use									
	00000110 =	5 DMA Contro	ller error trap									
	00000100 = 5, DMA Controller error trap											
	0000011 = 3. Stack error trap											
	00000010 =	000010 = 2, Generic hard trap										
	00000001 =	1, Address erro	or trap									
	00000000 =	0, Oscillator fai	il trap									

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
CAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	—
CAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)
CAN2 – RX Data Ready	00110111	0X0540(C2RXD)	—
CAN2 – TX Data Request	01000111	—	0X0542(C2TXD)
DCI – Codec Transfer Done	00111100	0X0290(RXBUF0)	0X0298(TXBUF0)
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	—
ADC2 – ADC2 Convert Done	00010101	0X0340(ADC2BUF0)	—
PMP – PMP Data Move	00101101	0X0608(PMPDAT1)	0X0608(PMPDAT1)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS (CONTINUED)

FIGURE 8-2: DMA CONTROLLER BLOCK DIAGRAM

REGISTER 16-9: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	_	—	CHOPCLK9	CHOPCLK8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CHOPCLK7 | CHOPCLK6 | CHOPCLK5 | CHOPCLK4 | CHOPCLK3 | CHOPCLK2 | CHOPCLK1 | CHOPCLK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHPCLKEN: Enable Chop Clock Generator bit
	1 = Chop clock generator is enabled
	0 = Chop clock generator is disabled
bit 14-10	Unimplemented: Read as '0'
bit 9-0	CHOPCLK<9:0>: Chop Clock Divider bits
	The frequency of the chop clock signal is given by the following expression: Chop Frequency = (FP/PCLKDIV<2:0>)/(CHOP<9:0> + 1)

REGISTER 16-10: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MDC	C<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			MD	C<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	pit	U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	red x = Bit is unknown		

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

REGISTER 16-25: PWMCAPx: PWMx PRIMARY TIME BASE CAPTURE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCAF	⁰ x<15:8> ^(1,2)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCA	Px<7:0> ^(1,2)			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	-n = Value at POR '1' = Bit is set		:	'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **PWMCAPx<15:0>:** PWMx Captured Time Base Value bits^(1,2)

The value in this register represents the captured PWMx time base value when a leading edge is detected on the current-limit input.

Note 1: The capture feature is only available on a primary output (PWMxH).

2: This feature is active only after LEB processing on the current-limit input signal is complete.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware clears at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C; hardware clears at the end of the eighth bit of a master receive data byte
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins; hardware clears at the end of a master Stop sequence
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware clears at the end of a master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins; hardware clears at the end of a master Start sequence
	0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receive buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) for information on enabling the UART module for transmit operation.

REGISTER 21-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	'OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0	
bit 15				•		•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set	:	'0' = Bit is cleared		x = Bit is unki	nown	
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	its				
	1111 = Filter	hits received in	n RX FIFO bu	ffer				
	1110 = Filter	hits received in	n RX Buffer 14	4				
	•							
	•							
	• 0001 - Filtor	hite received in	DV Duffor 1					
	0001 - Filter	hits received in	n RX Buffer 0					
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 b	its (same value	es as bits 15-12	2)		
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 b	its (same value	es as bits 15-12	2)		
bit 3-0						/		
~	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 b	its (same value	es as bits 15-12			

REGISTER 24-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RSE	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			RSE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 RSE<15:0>: DCI Receive Slot Enable bits

1 = CSDI data is received during Individual Time Slot n

0 = CSDI data is ignored during Individual Time Slot n

REGISTER 24-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			TSE	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			TSE	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimple					= Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown				

bit 15-0 TSE<15:0>: DCI Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during Individual Time Slot n

0 = CSDO pin is tri-stated or driven to logic '0' during the individual time slot, depending on the state of the CSDOM bit

REGISTER 25-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—			PTGQPTR<4:0	>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-15)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	- 1)<7:0> (2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x	()<7:0> ⁽²⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾
A queue location for storage of the STEP(2x +1) command byte.bit 7-0STEP(2x)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 25-1 for the Step command encoding.
 - 3: The Step registers maintain their values on any type of Reset.

REGISTER 26-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT **CONTROL REGISTER**

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	_	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

.. · - •

DIL 15-12	Unimplemented: Read as 10
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = PWM6H
	1010 = PWM6L
	1001 = PWM5H
	1000 = PWM5L
	0111 = PWM4H
	0110 = PWM4L
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
	1111 = FLT4
	1111 = FLT4 1110 = FLT2
	1111 = FLT4 1110 = FLT2 1101 = PTGO19
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2H
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM4H
	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2H 0010 = PWM1H

		5444.0	D 444 0	D #44 0	D 444 0	D 444 0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMP1R0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0				
bit 7 bit											
r											
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	ALRMEN: Ala	arm Enable bit									
	1 = Alarm is	enabled (cleare	ed automatica	ally after an ala	arm event when	ever ARPT<7:(0> = 0x00 and				
	CHIME =	• 0)		5							
	0 = Alarm is	disabled									
bit 14	CHIME: Chim	ne Enable bit									
	1 = Chime is	enabled; ARP	T<7:0> bits ar	e allowed to ro	oll over from 0x0	00 to 0xFF					
h:: 40.40			T<7:0> Dits St	op once they i	reach 0x00						
DIT 13-10		>: Alarm Mask	Configuration	DIIS							
	0000 = Every	/ nair second									
	0010 = Every	/ 10 seconds									
	0011 = Every	/ minute									
	0100 = Every	/ 10 minutes									
	0101 = Every	/ hour									
	0110 = Once	a week									
	1000 = Once	a month									
	1001 = Once	a year (except	when configu	ured for Februa	ary 29th, once e	every 4 years)					
	101x = Rese	rved – do not u rved – do not u	se								
hit 0.8			io Pogistor M	lindow Pointor	bite						
Dit 9-0	Points to the	.07. Alaini van	Δlarm Value r	agisters when	reading the AL	2MV/AL register	The				
	ALRMPTR<1	:0> value decre	ements on eve	ery read or writer	te of ALRMVAL	until it reaches	'00'.				
bit 7-0	ARPT<7:0>:	Alarm Repeat (Counter Value	bits							
	11111111 =	Alarm will repe	at 255 more ti	imes							
	•										
	•										
	•	Alarm will not r	eneat								
	The counter of	lecrements on	any alarm eve	ent. The counter	er is prevented	from rolling ove	r from 0x00 to				
	0xFF unless 0	CHIME = 1.	-		-	-					

REGISTER 27-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

FIGURE 33-12: TIMERQ (QEIX MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 33-29: QEIX MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	, Symbol Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with Prescaler	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with Prescaler	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with Prescaler	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	_	ns	
TQ20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TxCK o Timer	_	1	Тсү	—	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE	33-60:	ADCx CONVERSION (10-BIT M	ODE) TI	MING R	EQUIRE	MENTS		
AC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Param No.	Symbol	Characteristic	Units	Conditions				
		Cloc	k Parame	eters				
AD50	TAD	ADCx Clock Period	75	_	_	ns		
AD51	tRC	ADCx Internal RC Oscillator Period	—	250	_	ns		
		Con	version F	Rate				
AD55	tCONV	Conversion Time	—	12 Tad	_	—		
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	Using simultaneous sampling	
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	2 Tad	—		_		
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	4 Tad	—		_		
		Timin	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	_	3 Tad	_	Auto-convert trigger not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 TAD				
AD63	t DPU	Time to Stabilize Analog Stage			20	μS	(Note 3)	

Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality Note 1: is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: The parameter, tDPU, is the time required for the ADCx module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON> = 1). During this time, the ADCx result is indeterminate.

4: These parameters are characterized, but not tested in manufacturing.

from ADC Off to ADC On⁽²⁾

TABLE 33-61: DMA MODULE TIMING REQUIREMENTS

AC CH	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min. Typ. ⁽¹⁾		Max.	Units	Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)			ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Min Typ Max			Units	Conditions			
	ADC Accuracy (12-Bit Mode) ⁽¹⁾									
HAD20a	Nr	Resolution ⁽³⁾	1:	12 Data Bits						
HAD21a	INL	Integral Nonlinearity	-6	-6 — 6		LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V			
HAD22a	DNL	Differential Nonlinearity	-1	-1 — 1		LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23a	Gerr	Gain Error	-10	_	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V			
HAD24a	EOFF	Offset Error	-5 — 5		LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V				
		Dynamic	Performa	nce (12·	-Bit Mode	e) ⁽²⁾				
HAD33a	FNYQ	Input Signal Bandwidth	_	—	200	kHz				

TABLE 34-14: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 34-15: ADCx MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min	Min Typ Max			Conditions		
HAD20b	Nr	Resolution ⁽³⁾	10 Data Bits			bits			
HAD21b	INL	Integral Nonlinearity	-1.5 — 1.5		LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V			
HAD22b	DNL	Differential Nonlinearity	-0.25	-0.25 — 0.25		LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD23b	Gerr	Gain Error	-2.5	—	2.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD24b	EOFF	Offset Error	-1.25	—	1.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
		Dynamic F	Performa	nce (10-	Bit Mode	e) ⁽²⁾			
HAD33b	FNYQ	Input Signal Bandwidth	_	_	400	kHz			

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support