

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm710-h-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

	<u> </u>						(01011)		01									
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See definit	tion when W	IN = x							
C1BUFPNT1	0420	F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0	F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0	0000
C1BUFPNT2	0422	F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0	F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0	0000
C1BUFPNT3	0424	F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0	F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0	0000
C1BUFPNT4	0426	F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0	F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0	0000
C1RXM0SID	0430	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	—	EID17	EID16	xxxx
C1RXM0EID	0432								E	ID<15:0>								xxxx
C1RXM1SID	0434	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	—	EID17	EID16	xxxx
C1RXM1EID	0436								E	ID<15:0>								xxxx
C1RXM2SID	0438	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C1RXM2EID	043A								E	ID<15:0>								xxxx
C1RXF0SID	0440	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF0EID	0442								E	ID<15:0>								xxxx
C1RXF1SID	0444	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF1EID	0446								E	ID<15:0>								xxxx
C1RXF2SID	0448	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF2EID	044A								E	ID<15:0>						_		xxxx
C1RXF3SID	044C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF3EID	044E								E	ID<15:0>								xxxx
C1RXF4SID	0450	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF4EID	0452								E	ID<15:0>								xxxx
C1RXF5SID	0454	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF5EID	0456								E	ID<15:0>						_		xxxx
C1RXF6SID	0458	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	—	EID17	EID16	xxxx
C1RXF6EID	045A								E	ID<15:0>								xxxx
C1RXF7SID	045C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF7EID	045E								E	ID<15:0>								xxxx
C1RXF8SID	0460	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF8EID	0462								E	ID<15:0>								xxxx
C1RXF9SID	0464	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF9EID	0466								E	ID<15:0>						_		xxxx
C1RXF10SID	0468	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	_	EID17	EID16	xxxx
C1RXF10EID	046A								E	ID<15:0>								xxxx

TABLE 4-25: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

 Legend:
 x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 These registers are not present on dsPIC33EPXXXGM3XX devices.

dsPIC33EPXXXGM3XX/6XX/7XX

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	—	—	-	—	—	—					
bit 15							bit 8					
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
	—	DAE	DOOVR	—	—	_	—					
bit 7							bit 0					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unknown						
bit 15-6	Unimplemen	ted: Read as	'0'									
bit 5	DAE: DMA A	ddress Error S	Soft Trap Status	s bit								
	1 = DMA add	1 = DMA address error soft trap has occurred										
	0 = DMA add	0 = DMA address error soft trap has not occurred										
bit 4	DOOVR: DO	DOOVR: DO Stack Overflow Soft Trap Status bit										
	1 = DO stack	1 = DO stack overflow soft trap has occurred										

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

	0 = DO stack overflow soft trap has not occurred
bit 3-0	Unimplemented: Read as '0'

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15 bit 8											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
—	—	—	—	—	—	—	SGHT				
bit 7 bit 0											
Legend:											

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	Legena.			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0 SGHT: Software Generated Hard Trap Status bit

- 1 = Software generated hard trap has occurred
- 0 = Software generated hard trap has not occurred

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports" (DS70000598) which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

11.5 High-Voltage Detect

The dsPIC33EPXXXGM3XX/6XX/7XX devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tri-state condition. The device remains in this I/O tristate condition as long as the high-voltage condition is present.

11.6 I/O Helpful Tips

- In some cases, certain pins, as defined in Table 33-10 under "Injection Current", have internal protection diodes to VDD and VSs. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in **Section 33.0 "Electrical Characteristics"** for additional information.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	—	—	—	—	—	—					
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_				OCFAR<6:0	>							
bit 7	·						bit 0					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown						
bit 15-7	Unimplemen	ted: Read as '	0'									
bit 6-0	OCFAR<6:0> (see Table 11	OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)										
	1111100 = Input tied to RPI124											
	•											
	•											
	•											

REGISTER 11-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24EFamily Reference Manual", "Output Compare" (DS70005157), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See the *"dsPIC33/PIC24 Family Reference Manual"*, **"Output Compare"** (DS70005157) for OCxR and OCxRS register restrictions.

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL			
bit 15			•				bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	PENH: PWMx	xH Output Pin o odule controls t	Ownership bit the PWMxH p	in						
bit 14			ie PvvivixH pir	1						
Dit 14	PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin									
bit 13	POLH: PWM	xH Output Pin	Polarity bit							
	1 = PWMxH p 0 = PWMxH p	oin is active-low oin is active-hig	v Jh							
bit 12	POLL: PWM>	<l f<="" output="" pin="" td=""><td>Polarity bit</td><td></td><td></td><td></td><td></td></l>	Polarity bit							
	1 = PWMxL p 0 = PWMxL p	in is active-low in is active-hig	/ h							
bit 11-10	PMOD<1:0>:	PWMx # I/O P	in Mode bits ⁽¹)						
	11 = PWMx // 10 = PWMx // 01 = PWMx // 00 = PWMx //	/O pin pair is in /O pin pair is in /O pin pair is in /O pin pair is in	the True Inde Push-Pull Ou Redundant C Complement	ependent Outpu Itput mode Output mode arv Output mode	ut mode de					
bit 9	OVRENH: OV	verride Enable	for PWMxH P	in bit						
	1 = OVRDAT∙ 0 = PWMx ge	<1> controls th enerator control	e output on th Is the PWMxH	e PWMxH pin I pin						
bit 8	OVRENL: Ov	erride Enable f	for PWMxL Pi	n bit						
	1 = OVRDAT 0 = PWMx ge	<0> controls th enerator control	e output on th ls the PWMxL	e PWMxL pin pin						
bit 7-6	OVRDAT<1:0 If OVERENH If OVERENL	Description: Description (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	VMxH, PWMxl s driven to the driven to the	L Pins if Overri state specified state specified	de is Enabled b by OVRDAT< by OVRDAT<0	its 1>. >.				
bit 5-4	FLTDAT<1:0>: Data for PWMxH and PWMxI. Pins if FLTMOD is Fnabled bits									
	If Fault is active If Fault is active	ve, PWMxH is ve, PWMxL is o	driven to the s driven to the s	state specified	by FLTDAT<1> by FLTDAT<0>.					
bit 3-2	CLDAT<1:0>	: Data for PWN	/IxH and PWIV	IxL Pins if CLN	IOD is Enabled	bits				
	If current limit If current limit	is active, PWN is active, PWN	/IxH is driven f /IxL is driven t	to the state spe o the state spe	ecified by CLDA cified by CLDA	.T<1>. T<0>.				
Note 1: The	ese bits should	not be changed	d after the PW	Mx module is o	enabled (PTEN	= 1).				

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Quadrature Encoder Interface (QEI)" (DS70601) which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- · 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High Register
- 32-Bit Position Compare Low Register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- · External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEIx block diagram.

-													
U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0						
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN						
bit 15							bit 8						
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0						
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN						
bit 7	-		•			-	bit C						
Legend:		HS = Hardware	e Settable bit	C = Clearable	e bit								
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	1 as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15-14	Unimpleme	nted: Read as '	כ'										
bit 13	PCHEQIRQ	: Position Count	er Greater Tha	n or Equal Cor	npare Status bi	t							
	1 = POSxCN	NT ≥ QEIxGEC											
	0 = POSxCNT < QEIxGEC												
bit 12	PCHEQIEN:	Position Counter	er Greater Tha	n or Equal Con	npare Interrupt	Enable bit							
	1 = Interrupt is enabled												
b :+ 44			ar Loop Them a		are Otetus hit								
			er Less Than o	r Equal Compa	are Status bit								
	1 = POSXCN 0 = POSXCN	T = QEIXLEC											
bit 10	PCLEQIEN:	Position Counte	er Less Than o	r Equal Compa	are Interrupt En	able bit							
	1 = Interrupt is enabled												
	0 = Interrupt	is disabled											
bit 9	POSOVIRQ	: Position Count	er Overflow Sta	atus bit									
	1 = Overflow has occurred												
		0 = No overflow has occurred											
DIT 8	POSOVIEN:	Position Counter	er Overflow Int	errupt Enable t	DIT								
	1 = Interrupt is enabled 0 = Interrupt is disabled												
bit 7	PCIIRQ: Pos	sition Counter (F	lomina) Initializ	vation Process	Complete Stati	us hit(1)							
SICT	1 = POSxCN	NT was reinitializ	ed		Complete clat								
	0 = POSxCN	0 = POSxCNT was not reinitialized											
bit 6	PCIIEN: Pos	sition Counter (H	loming) Initializ	ation Process	Complete inter	rupt Enable bit							
	1 = Interrupt	is enabled											
	0 = Interrupt	is disabled											
bit 5	VELOVIRQ:	Velocity Counte	er Overflow Sta	tus bit									
	1 = Overflow	v has occurred	d										
bit 4			u r Ovorflow Inte	rrunt Enghla b	:+								
DIL 4	1 = Interrunt			enupt Enable b	IL								
	0 = Interrupt	is disabled											
bit 3	HOMIRQ: S	tatus Flag for Ho	ome Event Stat	us bit									
	1 = Home ev	vent has occurre	d										
	0 = No home	e event has occu	ırred										

REGISTER 17-3: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

REGISTER 17-15: QEIXGECH: QEIX GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			QEIGE	EC<31:24>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	QEIGEC<23:16>										
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn				iown							

bit 15-0 **QEIGEC<31:16>:** High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 17-16: QEIXGECL: QEIX GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			QEIGE	C<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			QEIG	EC<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 **QEIGEC<15:0>:** Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit has not yet started, SPIxTXB is full

0 = Transmit has started, SPIxTXB is empty

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer Mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits
- 1111 = Fosc 1110 = OSCI pin 1101 = FRC oscillator 1100 = Reserved 1011 = Internal LPRC oscillator 1010 = Reserved 100x = Reserved 0111 = Reserved 0110 = Reserved 0101 = Reserved 0100 = CMP1 module⁽¹⁾ 0011 = CTED2 pin 0010 = CTED1 pin 0001 = OC1 module 0000 = IC1 module Unimplemented: Read as '0'

bit 1-0

Note 1: If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

24.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Converter Interface (DCI) Module" (DS70356), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/ decoders (Codecs), ADC and D/A Converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- AC-Link Compliant mode

General features include:

- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

FIGURE 24-1: DCI MODULE BLOCK DIAGRAM

26.1.2 **OP AMP CONFIGURATION B**

Figure 26-6 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADCx input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 33-52 in Section 33.0 "Electrical Characteristics" for the typical value of RINT1. Table 33-57 and Table 33-58 in Section 33.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADCx module in this configuration.

Figure 26-6 also defines the equation to be used to calculate the expected voltage at point, VOAxOUT. This is the typical inverting amplifier equation.

OP AMP CONFIGURATION B

FIGURE 26-6:

26.2 **Op Amp/Comparator Resources**

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the						
	product page using the link above, enter						
	this URL in your browser:						
	http://www.microchip.com/wwwproducts						
	Devices.aspx?dDocName=en555464						

26.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

- See Table 33-52 for the Minimum value for the feedback resistor. 2:
- See Table 33-59 and Table 33-60 for the Minimum Sample Time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

© 2013-2014 Microchip Technology Inc.

28.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Parallel Master Port (PMP)" (DS70576), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (4,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7	
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(5,6,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁶⁾	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁸⁾	_	+20(8)	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins: (IICL + IICH) $\leq \sum$ IICT	

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

4: VIL source < (Vss – 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 33-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽²⁾		Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)
			Asynchronous	10		—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N		_	ns	N = Prescaler value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS (T1CON<1>) bit)		DC		50	kHz	
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimensior	n Limits	MIN	NOM	MAX		
Contact Pitch	E1		0.80 BSC			
Contact Pitch	E2		0.80 BSC			
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Diameter (X121)	X			0.32		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D