

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 70 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                     |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, Motor Control PWM, POR, PWM, WDT  |
| Number of I/O              | 85                                                                               |
| Program Memory Size        | 128KB (43K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 16К х 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 49x10b/12b                                                                   |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 100-TQFP                                                                         |
| Supplier Device Package    | 100-TQFP (14x14)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm710-i-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Pin # | Full Pin Name                                   | Pin # | Full Pin Name                                                 |
|-------|-------------------------------------------------|-------|---------------------------------------------------------------|
| E1    | PWM6H/T8CK/RD4                                  | J8    | No Connect                                                    |
| E2    | PWM6L/T9CK/RD3                                  | J9    | No Connect                                                    |
| E3    | AN19/RP118/PMA5/RG6                             | J10   | AN41/RP81/RE1                                                 |
| E4    | PWM5H/RD2                                       | J11   | AN30/SDA1/RPI52/RC4                                           |
| E5    | No Connect                                      | K1    | PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0                   |
| E6    | RP113/RG1                                       | K2    | PGEC3/CVREF+/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/<br>CTED1/RB1     |
| E7    | No Connect                                      | К3    | VREF+/AN34/PMA7/RF10                                          |
| K4    | OA3OUT/AN6/C3IN4-/C4IN4-/C4IN1+/RP48/OCFB/RC0   | L3    | AVss                                                          |
| K5    | No Connect                                      | L4    | OA3IN-/AN7/C3IN1-/C4IN1-/RP49/RC1                             |
| K6    | AN37/RF12                                       | L5    | OA3IN+/AN8/C3IN3-/C3IN1+/RPI50/U1RTS/BCLK1/FLT3/<br>PMA13/RC2 |
| K7    | AN14/RPI94/FLT7/PMA1/RE14                       | L6    | AN36/RF13                                                     |
| K8    | VDD                                             | L7    | AN13/C3IN2-/U2CTS/FLT6/PMA10/RE13                             |
| K9    | AN39/RD15                                       | L8    | AN15/RPI95/FLT8/PMA0/RE15                                     |
| K10   | OA5IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4    | L9    | AN38/RD14                                                     |
| K11   | AN40/RPI80/RE0                                  | L10   | SDA2/RPI24/PMA9/RA8                                           |
| L1    | PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2 | L11   | FLT32/SCL2/RP36/PMA8/RB4                                      |
| 12    |                                                 |       |                                                               |

# TABLE 2:PIN NAMES: dsPIC33EP128/256/512GM310/710 DEVICES<sup>(1,2,3)</sup> (CONTINUED)

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select (PPS)" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

3: The availability of I<sup>2</sup>C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 30.0 "Special Features" for more information.

NOTES:





Note 1: Memory areas are not shown to scale.

2: On Reset, these bits are automatically copied into the device Configuration Shadow registers.

# 4.3 Special Function Register Maps

### TABLE 4-1: CPU CORE REGISTER MAP

| SFR<br>Name | Addr. | Bit 15 | Bit 14   | Bit 13 | Bit 12      | Bit 11     | Bit 10 | Bit 9      | Bit 8       | Bit 7        | Bit 6  | Bit 5      | Bit 4      | Bit 3        | Bit 2       | Bit 1 | Bit 0 | All<br>Resets |
|-------------|-------|--------|----------|--------|-------------|------------|--------|------------|-------------|--------------|--------|------------|------------|--------------|-------------|-------|-------|---------------|
| W0          | 0000  |        |          |        |             |            |        |            | W0 (WF      | REG)         |        |            |            |              |             |       |       | xxxx          |
| W1          | 0002  |        |          |        |             |            |        |            | W1          |              |        |            |            |              |             |       |       | xxxx          |
| W2          | 0004  |        |          |        |             |            |        |            | W2          |              |        |            |            |              |             |       |       | xxxx          |
| W3          | 0006  |        |          |        |             |            |        |            | W3          |              |        |            |            |              |             |       |       | xxxx          |
| W4          | 8000  |        |          |        |             |            |        |            | W4          |              |        |            |            |              |             |       |       | xxxx          |
| W5          | 000A  |        |          |        |             |            |        |            | W5          |              |        |            |            |              |             |       |       | xxxx          |
| W6          | 000C  |        |          |        |             |            |        |            | W6          |              |        |            |            |              |             |       |       | xxxx          |
| W7          | 000E  |        |          |        |             |            |        |            | W7          |              |        |            |            |              |             |       |       | xxxx          |
| W8          | 0010  |        |          |        |             |            |        |            | W8          |              |        |            |            |              |             |       |       | xxxx          |
| W9          | 0012  |        |          |        |             |            |        |            | W9          |              |        |            |            |              |             |       |       | xxxx          |
| W10         | 0014  |        |          |        |             |            |        |            | W10         | )            |        |            |            |              |             |       |       | xxxx          |
| W11         | 0016  |        | W11 xxx  |        |             |            |        |            |             |              |        | xxxx       |            |              |             |       |       |               |
| W12         | 0018  |        | W12 xxxx |        |             |            |        |            |             |              |        |            |            |              |             |       |       |               |
| W13         | 001A  |        | W13 xxxx |        |             |            |        |            |             |              |        |            |            |              |             |       |       |               |
| W14         | 001C  |        | W14 xxx  |        |             |            |        |            |             |              |        | xxxx       |            |              |             |       |       |               |
| W15         | 001E  |        | W15 x2   |        |             |            |        |            |             |              | xxxx   |            |            |              |             |       |       |               |
| SPLIM       | 0020  |        |          |        |             |            |        |            | SPLI        | М            |        |            |            |              |             |       |       | 0000          |
| ACCAL       | 0022  |        |          |        |             |            |        |            | ACCA        | AL.          |        |            |            |              |             |       |       | 0000          |
| ACCAH       | 0024  |        |          |        |             |            |        |            | ACCA        | λH           |        |            |            |              |             |       |       | 0000          |
| ACCAU       | 0026  |        |          | Si     | gn Extensio | n of ACCA< | :39>   |            |             |              |        |            | AC         | CAU          |             |       |       | 0000          |
| ACCBL       | 0028  |        |          |        |             |            |        |            | ACCE        | BL           |        |            |            |              |             |       |       | 0000          |
| ACCBH       | 002A  |        |          |        |             |            |        |            | ACCE        | зн           |        |            |            |              |             |       |       | 0000          |
| ACCBU       | 002C  |        |          | Si     | gn Extensio | n of ACCB< | :39>   |            |             |              |        |            | AC         | CBU          |             |       |       | 0000          |
| PCL         | 002E  |        | _        |        |             |            | Pr     | ogram Cour | nter Low Wo | ord Register | _      |            |            |              |             |       | —     | 0000          |
| PCH         | 0030  | _      | —        | —      | —           | _          | _      | _          | _           | _            |        | Pr         | ogram Co   | unter High V | Vord Regist | er    |       | 0000          |
| DSRPAG      | 0032  | _      | _        | _      | _           | _          | _      |            |             |              | Data S | pace Read  | l Page Reg | gister       |             |       |       | 0001          |
| DSWPAG      | 0034  | _      | _        | _      | _           | _          | _      | _          |             |              | [      | Data Space | Write Pag  | ge Register  |             |       |       | 0001          |
| RCOUNT      | 0036  |        |          |        |             |            |        | REPH       | EAT LOOP CO | ount Registe | er     |            |            |              |             |       |       | 0000          |
| DCOUNT      | 0038  |        |          |        |             |            |        |            | DCOUNT      | <15:0>       |        |            |            |              |             |       |       | 0000          |
| DOSTARTL    | 003A  |        |          |        |             |            |        | DOS        | TARTL<15:   | 1>           |        |            |            |              |             |       | —     | 0000          |
| DOSTARTH    | 003C  | —      |          |        |             |            |        |            |             |              | 0000   |            |            |              |             |       |       |               |
| DOENDL      | 003E  |        |          |        |             |            |        | DO         | ENDL<15:1   | >            |        | -          |            |              |             |       | —     | 0000          |
| DOENDH      | 0040  |        |          | _      |             |            |        |            |             |              |        |            |            | DOEND        | 0H<5:0>     |       |       | 0000          |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000689D-page 46

|             | -22.  |                          |        |                       | ILC001   |          |          |          |          |              |       |           |          |          |          |          |          |               |
|-------------|-------|--------------------------|--------|-----------------------|----------|----------|----------|----------|----------|--------------|-------|-----------|----------|----------|----------|----------|----------|---------------|
| SFR<br>Name | Addr. | Bit 15                   | Bit 14 | Bit 13                | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    | Bit 7        | Bit 6 | Bit 5     | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
| ADC2BUF9    | 0352  |                          |        |                       |          |          |          |          | ADC2 Da  | ata Buffer   | 9     |           |          |          |          |          |          | xxxx          |
| ADC2BUFA    | 0354  |                          |        |                       |          |          |          |          | ADC2 Da  | ta Buffer 1  | 10    |           |          |          |          |          |          | xxxx          |
| ADC2BUFB    | 0356  |                          |        |                       |          |          |          |          | ADC2 Da  | ta Buffer ´  | 11    |           |          |          |          |          |          | xxxx          |
| ADC2BUFC    | 0358  |                          |        |                       |          |          |          |          | ADC2 Da  | ta Buffer 1  | 12    |           |          |          |          |          |          | xxxx          |
| ADC2BUFD    | 035A  |                          |        |                       |          |          |          |          | ADC2 Da  | ta Buffer 1  | 13    |           |          |          |          |          |          | xxxx          |
| ADC2BUFE    | 035C  | ADC2 Data Buffer 14 xxxx |        |                       |          |          |          |          |          |              |       |           |          |          |          |          |          |               |
| ADC2BUFF    | 035E  |                          |        |                       |          |          |          |          | ADC2 Da  | ta Buffer 1  | 15    |           |          |          |          |          |          | xxxx          |
| AD2CON1     | 0360  | ADON                     | _      | ADSIDL                | ADDMABM  | _        | AD12B    | FORM1    | FORM0    | SSRC2        | SSRC1 | SSRC0     | SSRCG    | SIMSAM   | ASAM     | SAMP     | DONE     | 0000          |
| AD2CON2     | 0362  | VCFG2                    | VCFG1  | VCFG0                 | OFFCAL   | _        | CSCNA    | CHPS1    | CHPS0    | BUFS         | SMPI4 | SMPI3     | SMPI2    | SMPI1    | SMPI0    | BUFM     | ALTS     | 0000          |
| AD2CON3     | 0364  | ADRC                     | _      | _                     | SAMC4    | SAMC3    | SAMC2    | SAMC1    | SAMC0    | ADCS7        | ADCS6 | ADCS5     | ADCS4    | ADCS3    | ADCS2    | ADCS1    | ADCS0    | 0000          |
| AD2CHS123   | 0366  |                          |        | —                     | CH123SB2 | CH123SB1 | CH123NB1 | CH123NB0 | CH123SB0 | -            | -     | —         | CH123SA2 | CH123SA1 | CH123NA1 | CH123NA0 | CH123SA0 | 0000          |
| AD2CHS0     | 0368  | CH0NB                    | _      | CH0SB5 <sup>(1)</sup> | CH0SB4   | CH0SB3   | CH0SB2   | CH0SB1   | CH0SB0   | <b>CH0NA</b> |       | CH0SA5(1) | CH0SA4   | CH0SA3   | CH0SA2   | CH0SA1   | CH0SA0   | 0000          |
| AD2CSSH     | 036E  |                          |        |                       |          |          |          |          | CSS<     | :31:16>      |       |           |          |          |          |          |          | 0000          |
| AD2CSSL     | 0370  |                          |        |                       |          |          |          |          | CSS      | <15:0>       |       |           |          |          |          |          |          | 0000          |
| AD2CON4     | 0372  | _                        | _      |                       | —        | _        |          | _        | ADDMAEN  | _            | _     | _         | _        |          | DMABL2   | DMABL1   | DMABL0   | 0000          |

#### TABLE 4-22: ADC1 AND ADC2 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bits 13 and bit 5 are reserved in the AD2CHS0 register, unlike the AD1CHS0 register.

# **REGISTER 6-1: RCON: RESET CONTROL REGISTER<sup>(1)</sup> (CONTINUED)**

 bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device was in Sleep mode

 0 = Device was not in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device was in Idle mode

 0 = Device was not in Idle mode

 0 = Device was not in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

# bit 0 **POR:** Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
  - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

| U-0           | U-0          | U-0                                          | U-0              | U-0              | U-0              | U-0                | U-0   |  |  |  |  |  |
|---------------|--------------|----------------------------------------------|------------------|------------------|------------------|--------------------|-------|--|--|--|--|--|
| —             | —            | —                                            | —                | —                | —                | —                  | —     |  |  |  |  |  |
| bit 15        |              |                                              |                  |                  |                  |                    | bit 8 |  |  |  |  |  |
|               |              |                                              |                  |                  |                  |                    |       |  |  |  |  |  |
| U-0           | U-0          | R/W-0                                        | R/W-0            | U-0              | U-0              | U-0                | U-0   |  |  |  |  |  |
|               | —            | DAE                                          | DOOVR            | —                | —                | _                  | —     |  |  |  |  |  |
| bit 7         |              |                                              |                  |                  |                  |                    | bit 0 |  |  |  |  |  |
|               |              |                                              |                  |                  |                  |                    |       |  |  |  |  |  |
| Legend:       |              |                                              |                  |                  |                  |                    |       |  |  |  |  |  |
| R = Readabl   | le bit       | W = Writable                                 | bit              | U = Unimple      | mented bit, read | as '0'             |       |  |  |  |  |  |
| -n = Value at | t POR        | '1' = Bit is set                             | t                | '0' = Bit is cle | eared            | x = Bit is unknown |       |  |  |  |  |  |
|               |              |                                              |                  |                  |                  |                    |       |  |  |  |  |  |
| bit 15-6      | Unimplemen   | ted: Read as                                 | '0'              |                  |                  |                    |       |  |  |  |  |  |
| bit 5         | DAE: DMA A   | ddress Error S                               | Soft Trap Status | s bit            |                  |                    |       |  |  |  |  |  |
|               | 1 = DMA add  | 1 = DMA address error soft trap has occurred |                  |                  |                  |                    |       |  |  |  |  |  |
|               | 0 = DMA add  | ress error soft                              | trap has not o   | ccurred          |                  |                    |       |  |  |  |  |  |
| bit 4         | DOOVR: DO    | Stack Overflow                               | v Soft Trap Sta  | tus bit          |                  |                    |       |  |  |  |  |  |
|               | 1 = DO stack | 1 = DO stack overflow soft trap has occurred |                  |                  |                  |                    |       |  |  |  |  |  |

#### REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

|         | 0 = DO stack overflow soft trap has not occurred |
|---------|--------------------------------------------------|
| bit 3-0 | Unimplemented: Read as '0'                       |

#### REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

| U-0     | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|---------|-----|-----|-----|-----|-----|-----|-------|
| —       | —   | —   | —   | —   | —   | —   | —     |
| bit 15  |     |     | •   |     |     |     | bit 8 |
|         |     |     |     |     |     |     |       |
| U-0     | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 |
| —       | —   | —   | —   | —   | —   | —   | SGHT  |
| bit 7   |     |     |     |     |     |     | bit 0 |
|         |     |     |     |     |     |     |       |
| Legend: |     |     |     |     |     |     |       |

| R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown | Legena.           |                  |                             |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-----------------------------|--------------------|
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown                                                                | R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
|                                                                                                                                           | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 0 SGHT: Software Generated Hard Trap Status bit

- 1 = Software generated hard trap has occurred
- 0 = Software generated hard trap has not occurred

| REGISTER 11-20. RFINR40. FERIFIERAL FIN SELECT INFUT REGISTER 40 | REGISTER 11-28: | <b>RPINR40: PERIPHERAL PIN SELECT INPUT REGISTER 40</b> |
|------------------------------------------------------------------|-----------------|---------------------------------------------------------|
|------------------------------------------------------------------|-----------------|---------------------------------------------------------|

| U-0           | R/W-0                                 | R/W-0                                                                                                  | R/W-0                        | R/W-0                    | R/W-0            | R/W-0           | R/W-0          |  |  |  |  |  |
|---------------|---------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|------------------|-----------------|----------------|--|--|--|--|--|
| _             |                                       |                                                                                                        |                              | DTCMP5R<6:0              | )>               |                 |                |  |  |  |  |  |
| bit 15        |                                       |                                                                                                        |                              |                          |                  |                 | bit 8          |  |  |  |  |  |
|               |                                       |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
| U-0           | R/W-0                                 | R/W-0                                                                                                  | R/W-0                        | R/W-0                    | R/W-0            | R/W-0           | R/W-0          |  |  |  |  |  |
| _             |                                       |                                                                                                        |                              | DTCMP4R<6:               | )>               |                 |                |  |  |  |  |  |
| bit 7         |                                       |                                                                                                        |                              |                          |                  |                 | bit 0          |  |  |  |  |  |
|               |                                       |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
| Legend:       |                                       |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
| R = Readabl   | e bit                                 | W = Writable                                                                                           | bit                          | ad as '0'                |                  |                 |                |  |  |  |  |  |
| -n = Value at | POR                                   | '1' = Bit is set                                                                                       |                              | '0' = Bit is cle         | ared             | x = Bit is unkr | nown           |  |  |  |  |  |
|               |                                       |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
| bit 15        | Unimpleme                             | nted: Read as '                                                                                        | 0'                           |                          |                  |                 |                |  |  |  |  |  |
| bit 14-8      | DTCMP5R<<br>(see Table 1 <sup>2</sup> | <b>5:0&gt;:</b> Assign PV<br>I-2 for input pin                                                         | VM Dead-Tim<br>selection nur | e Compensation<br>nbers) | on Input 5 to th | e Corresponding | g RPn Pin bits |  |  |  |  |  |
|               | 1111100 <b>=  </b>                    | nput tied to RPI                                                                                       | 124                          |                          |                  |                 |                |  |  |  |  |  |
|               | •                                     |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
|               | •                                     |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
|               | 0000001 <b>=  </b>                    | nput tied to CM                                                                                        | P1                           |                          |                  |                 |                |  |  |  |  |  |
|               | 0000000 = I                           | nput tied to Vss                                                                                       |                              |                          |                  |                 |                |  |  |  |  |  |
| bit 7         | Unimpleme                             | nted: Read as '                                                                                        | 0'                           |                          |                  |                 |                |  |  |  |  |  |
| bit 6-0       |                                       | <b>DTCMP4R&lt;6:0&gt;:</b> Assign PWM Dead-Time Compensation Input 4 to the Corresponding RPn Pin bits |                              |                          |                  |                 |                |  |  |  |  |  |
|               |                                       | (see Table 11-2 for input pin selection numbers)                                                       |                              |                          |                  |                 |                |  |  |  |  |  |
|               | •                                     |                                                                                                        | 124                          |                          |                  |                 |                |  |  |  |  |  |
|               | •                                     |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
|               | •                                     |                                                                                                        |                              |                          |                  |                 |                |  |  |  |  |  |
|               | 0000001 =  <br>0000000 =              | nput tied to CM<br>nput tied to Vss                                                                    | P1                           |                          |                  |                 |                |  |  |  |  |  |

#### **REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)**

- bit 3 TRIGMODE: Trigger Status Mode Select bit
  - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
  - 0 = TRIGSTAT is cleared only by software

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits

- 111 = Center-Aligned PWM mode: Output sets high when OCxTMR = OCxR and sets low when OCxTMR = OCxRS<sup>(1)</sup>
- 110 = Edge-Aligned PWM mode: Output sets high when OCxTMR = 0 and sets low when OCxTMR = OCxR<sup>(1)</sup>
- 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
- 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
- 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
- 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
- 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
- 000 = Output compare channel is disabled
- **Note 1:** OCxR and OCxRS are double-buffered in PWM mode only.
  - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.
    - PTGO4 = OC1, OC5
    - PTGO5 = OC2, OC6
    - PTGO6 = OC3, OC7
    - PTGO7 = OC4, OC8

# 17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Quadrature Encoder Interface (QEI)" (DS70601) which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- · 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High Register
- 32-Bit Position Compare Low Register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- · External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEIx block diagram.

#### REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit has not yet started, SPIxTXB is full

0 = Transmit has started, SPIxTXB is empty

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer Mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

#### Standard Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

#### Enhanced Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

| R/W-0                | R/W-0   | R/W-0                              | R/W-0            | U                   | -0      | R/W-0               | R/W-0          | R/W-0              |  |  |
|----------------------|---------|------------------------------------|------------------|---------------------|---------|---------------------|----------------|--------------------|--|--|
| VCFG2 <sup>(1)</sup> | VCFG1   | <sup>1)</sup> VCFG0 <sup>(1)</sup> | OFFCAL           | _                   | _       | CSCNA               | CHPS1          | CHPS0              |  |  |
| bit 15               |         |                                    |                  |                     |         |                     |                | bit 8              |  |  |
| R-0                  | R/W-0   | R/W-0                              | R/W-0            | R/V                 | V-0     | R/W-0               | R/W-0          | R/W-0              |  |  |
| BUFS                 | SMPI4   | SMPI3                              | SMPI2            | SM                  | PI1     | SMPI0               | BUFM           | ALTS               |  |  |
| bit 7                |         |                                    |                  |                     |         |                     |                | bit 0              |  |  |
|                      |         |                                    |                  |                     |         |                     |                |                    |  |  |
| Legend:              |         |                                    |                  |                     |         |                     |                |                    |  |  |
| R = Readable         | bit     | W = Writable bi                    | t                | U = UI              | nimpler | mented bit, rea     | d as '0'       |                    |  |  |
| -n = Value at POR    |         | '1' = Bit is set                   | '1' = Bit is set |                     |         | ared                | x = Bit is unk | x = Bit is unknown |  |  |
| bit 15-13            | VCFG<2: | <b>0&gt;:</b> Converter Voltag     | e Reference      | Configu             | uration | bits <sup>(1)</sup> |                |                    |  |  |
|                      | Value   | VREFH                              | VREFL            | -                   |         |                     |                |                    |  |  |
|                      | 000     | Avdd                               | Avss             |                     |         |                     |                |                    |  |  |
|                      | 001     | External VREF+(2)                  | Avss             |                     |         |                     |                |                    |  |  |
|                      | 010     | Avdd                               | External VR      | REF- <b>(2)</b>     |         |                     |                |                    |  |  |
|                      | 011     | External VREF+(2)                  | External VR      | <sub>REF-</sub> (2) |         |                     |                |                    |  |  |
|                      | 1xx     | Avdd                               | Avss             |                     |         |                     |                |                    |  |  |
| bit 12               | OFFCAL: | Offset Calibration N               | lode Select b    | it                  |         |                     |                |                    |  |  |

#### REGISTER 23-2: ADxCON2: ADCx CONTROL REGISTER 2

1 = + and - inputs of channel Sample-and-Hold are connected to AVss

0 = + and – inputs of channel Sample-and-Hold are normal

- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Input Scan Select bit
  - 1 = Scans inputs for CH0+ during Sample MUXA

0 = Does not scan inputs

#### bit 9-8 CHPS<1:0>: Channel Select bits

In 12-Bit Mode (AD12B = 1), CHPS<1:0> Bits are Unimplemented and are Read as '00':

- lx = Converts CH0, CH1, CH2 and CH3
- 01 = Converts CH0 and CH1
- 00 = Converts CH0
- bit 7 **BUFS:** Buffer Fill Status bit (only valid when BUFM = 1)
  - 1 = ADCx is currently filling the second half of the buffer; the user application should access data in the first half of the buffer
  - 0 = ADCx is currently filling the first half of the buffer; the user application should access data in the second half of the buffer
- **Note 1:** The '001', '010' and '011' bit combinations for VCFG<2:0> are not applicable on ADC2.
  - 2: ADC2 does not support external VREF± inputs.



#### FIGURE 26-2: OP AMP/COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

| R/W-0               | R/W-0                    | R/W-0                              | R/W-0                      | R/W-0             | R/W-0               | R/W-0    | R/W-0              |  |
|---------------------|--------------------------|------------------------------------|----------------------------|-------------------|---------------------|----------|--------------------|--|
| PTEN15              | PTEN14                   |                                    |                            | PTEN              | <13:8>              |          |                    |  |
| bit 15              |                          |                                    |                            |                   |                     |          | bit 8              |  |
|                     |                          |                                    |                            |                   |                     |          |                    |  |
| R/W-0               | R/W-0                    | R/W-0                              | R/W-0                      | R/W-0             | R/W-0               | R/W-0    | R/W-0              |  |
|                     |                          | PTEN                               | <b> </b> <7:2>             |                   |                     | PTEN     | <b>I</b> <1:0>     |  |
| bit 7               |                          |                                    |                            |                   |                     |          | bit 0              |  |
|                     |                          |                                    |                            |                   |                     |          |                    |  |
| Legend:             |                          |                                    |                            |                   |                     |          |                    |  |
| R = Readab          | ole bit                  | W = Writable                       | bit                        | U = Unimplen      | nented bit, rea     | d as '0' |                    |  |
| -n = Value at Reset |                          | '1' = Bit is set '0' =             |                            | '0' = Bit is clea | 0' = Bit is cleared |          | x = Bit is unknown |  |
|                     |                          |                                    |                            |                   |                     |          |                    |  |
| bit 15              | PTEN15: PM               | 1CS2 Strobe En                     | able bit                   |                   |                     |          |                    |  |
|                     | 1 = PMA15 f              | unctions as eith                   | er PMA<15> c               | or PMCS2          |                     |          |                    |  |
|                     | 0 = PMA15 f              | unctions as port                   | t I/O                      |                   |                     |          |                    |  |
| bit 14              | PTEN14: PM               | ICS1 Strobe En                     | able bit                   |                   |                     |          |                    |  |
|                     | 1 = PMA14 f              | unctions as eith                   | er PMA<14> c               | or PMCS1          |                     |          |                    |  |
|                     | 0 = PMA14 f              | unctions as port                   | t I/O                      |                   |                     |          |                    |  |
| bit 13-2            | PTEN<13:2>               | PMP Address                        | Port Enable b              | oits              |                     |          |                    |  |
|                     | 1 = PMA<13<br>0 = PMA<13 | :2> function as<br>:2> function as | PMP address  <br>port I/Os | lines             |                     |          |                    |  |
| bit 1-0             | PTEN<1:0>:               | PMALH/PMALI                        | L Strobe Enabl             | le bits           |                     |          |                    |  |

1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL

# REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER<sup>(1)</sup>

Note 1: This register is not available on 44-pin devices.

0 = PMA1 and PMA0 function as port I/Os

© 2013-2014 Microchip Technology Inc.

| Base<br>Instr<br># | Assembly<br>Mnemonic |        | Assembly Syntax | Description                                       | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|--------|-----------------|---------------------------------------------------|---------------|----------------|--------------------------|
| 53                 | NEG                  | NEG    | Acc             | Negate Accumulator                                | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
|                    |                      | NEG    | f               | f = <del>f</del> + 1                              | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | NEG    | f,WREG          | WREG = $\overline{f}$ + 1                         | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | NEG    | Ws,Wd           | $Wd = \overline{Ws} + 1$                          | 1             | 1              | C,DC,N,OV,Z              |
| 54                 | NOP                  | NOP    |                 | No Operation                                      | 1             | 1              | None                     |
|                    |                      | NOPR   |                 | No Operation                                      | 1             | 1              | None                     |
| 55                 | POP                  | POP    | f               | Pop f from Top-of-Stack (TOS)                     | 1             | 1              | None                     |
|                    |                      | POP    | Wdo             | Pop from Top-of-Stack (TOS) to Wdo                | 1             | 1              | None                     |
|                    |                      | POP.D  | Wnd             | Pop from Top-of-Stack (TOS) to<br>W(nd):W(nd + 1) | 1             | 2              | None                     |
|                    |                      | POP.S  |                 | Pop Shadow Registers                              | 1             | 1              | All                      |
| 56                 | PUSH                 | PUSH   | f               | Push f to Top-of-Stack (TOS)                      | 1             | 1              | None                     |
|                    |                      | PUSH   | Wso             | Push Wso to Top-of-Stack (TOS)                    | 1             | 1              | None                     |
|                    |                      | PUSH.D | Wns             | Push W(ns):W(ns + 1) to Top-of-Stack<br>(TOS)     | 1             | 2              | None                     |
|                    |                      | PUSH.S |                 | Push Shadow Registers                             | 1             | 1              | None                     |
| 57                 | PWRSAV               | PWRSAV | #lit1           | Go into Sleep or Idle mode                        | 1             | 1              | WDTO,Sleep               |
| 58                 | RCALL                | RCALL  | Expr            | Relative Call                                     | 1             | 4              | SFA                      |
|                    |                      | RCALL  | Wn              | Computed Call                                     | 1             | 4              | SFA                      |
| 59                 | REPEAT               | REPEAT | #lit15          | Repeat Next Instruction lit15 + 1 times           | 1             | 1              | None                     |
|                    |                      | REPEAT | Wn              | Repeat Next Instruction (Wn) + 1 times            | 1             | 1              | None                     |
| 60                 | RESET                | RESET  |                 | Software device Reset                             | 1             | 1              | None                     |
| 61                 | RETFIE               | RETFIE |                 | Return from interrupt                             | 1             | 6 (5)          | SFA                      |
| 62                 | RETLW                | RETLW  | #lit10,Wn       | Return with literal in Wn                         | 1             | 6 (5)          | SFA                      |
| 63                 | RETURN               | RETURN |                 | Return from Subroutine                            | 1             | 6 (5)          | SFA                      |
| 64                 | RLC                  | RLC    | f               | f = Rotate Left through Carry f                   | 1             | 1              | C,N,Z                    |
|                    |                      | RLC    | f,WREG          | WREG = Rotate Left through Carry f                | 1             | 1              | C,N,Z                    |
|                    |                      | RLC    | Ws,Wd           | Wd = Rotate Left through Carry Ws                 | 1             | 1              | C,N,Z                    |
| 65                 | RLNC                 | RLNC   | f               | f = Rotate Left (No Carry) f                      | 1             | 1              | N,Z                      |
|                    |                      | RLNC   | f,WREG          | WREG = Rotate Left (No Carry) f                   | 1             | 1              | N,Z                      |
|                    |                      | RLNC   | Ws,Wd           | VVd = Rotate Left (No Carry) VVs                  | 1             | 1              | N,Z                      |
| 60                 | RRC                  | RRC    | I CARDO         | T = Rotate Right through Carry f                  | 1             | 1              | C,N,Z                    |
|                    |                      | RRC    | L, WREG         | WREG - Rotate Right through Carry Wa              | 1             | 1              |                          |
| 67                 | DDNC                 | RRC    | ws,wa           | f = Rotate Right (No Carry) f                     | 1             | 1              | 0,N,Z                    |
| 07                 | KKINC                | PRNC   | L<br>f WDTC     | W/REG = Potate Pight (No Carry) f                 | 1             | 1              | N Z                      |
|                    |                      | PRNC   | Ne Wd           | Wd = Rotate Right (No Carry) Ws                   | 1             | 1              | N Z                      |
| 68                 | SAC                  | SAC    | Acc #Slit4 Wdo  | Store Accumulator                                 | 1             | 1              | None                     |
| 00                 | brie                 | SAC R  | Acc. #Slit4.Wdo | Store Rounded Accumulator                         | 1             | 1              | None                     |
| 69                 | SE                   | SE     | Ws.Wnd          | Wnd = sign-extended Ws                            | 1             | 1              | C.N.Z                    |
| 70                 | SETM                 | SETM   | f               | f = 0xFFFF                                        | 1             | 1              | None                     |
|                    |                      | SETM   | WREG            | WREG = 0xFFFF                                     | 1             | 1              | None                     |
|                    |                      | SETM   | Ws              | Ws = 0xFFFF                                       | 1             | 1              | None                     |
| 71                 | SFTAC                | SFTAC  | Acc,Wn          | Arithmetic Shift Accumulator by (Wn)              | 1             | 1              | OA,OB,OAB,<br>SA,SB.SAB  |
|                    |                      | SFTAC  | Acc,#Slit6      | Arithmetic Shift Accumulator by Slit6             | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |

#### TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

| DC CHARACTERISTICS |        |                                         | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |   |    |    |                                                                                                                                               |  |
|--------------------|--------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Param<br>No.       | Symbol | Characteristic                          | Min.     Typ.     Max.     Units     Conditions                                                                                                                                                      |   |    |    |                                                                                                                                               |  |
|                    | lı∟    | Input Leakage Current <sup>(1,2)</sup>  |                                                                                                                                                                                                      |   |    |    |                                                                                                                                               |  |
| D150               |        | I/O Pins 5V Tolerant <sup>(3)</sup>     | -1                                                                                                                                                                                                   | — | +1 | μA | VSS $\leq$ VPIN $\leq$ 5V, Pin at high-impedance                                                                                              |  |
| DI51               |        | I/O Pins Not 5V Tolerant <sup>(3)</sup> | -1                                                                                                                                                                                                   | _ | +1 | μA | $\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$ |  |
| DI51a              |        | I/O Pins Not 5V Tolerant <sup>(3)</sup> | -1                                                                                                                                                                                                   | _ | +1 | μA | Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$                                                       |  |
| DI51b              |        | I/O Pins Not 5V Tolerant <sup>(3)</sup> | -1                                                                                                                                                                                                   | _ | +1 | μA | Vss $\leq$ VPIN $\leq$ VDD,<br>Pin at high-impedance,<br>-40°C $\leq$ TA $\leq$ +125°C                                                        |  |
| DI51c              |        | I/O Pins Not 5V Tolerant <sup>(3)</sup> | -1                                                                                                                                                                                                   | _ | +1 | μA | Analog pins shared with<br>external reference pins,<br>$-40^{\circ}C \le TA \le +125^{\circ}C$                                                |  |
| DI55               |        | MCLR                                    | -5                                                                                                                                                                                                   | — | +5 | μA | $Vss \leq V \text{PIN} \leq V \text{DD}$                                                                                                      |  |
| DI56               |        | OSC1                                    | -5                                                                                                                                                                                                   | _ | +5 | μA | $\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$                                     |  |

#### TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

**Note 1:** The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

| TABLE 33-40: SPI1 MAXIMUM DATA/CLOCK RATE SUMMAR) | TABLE 33-40: | SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY |
|---------------------------------------------------|--------------|--------------------------------------|
|---------------------------------------------------|--------------|--------------------------------------|

| AC CHARACTERISTICS   |                                          |                                             | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |     |     |     |  |
|----------------------|------------------------------------------|---------------------------------------------|-------------------------------------------------------|-----|-----|-----|--|
| Maximum<br>Data Rate | Master<br>Transmit Only<br>(Half-Duplex) | Master<br>Transmit/Receive<br>(Full-Duplex) | Slave<br>Transmit/Receive<br>(Full-Duplex)            | CKE | СКР | SMP |  |
| 25 MHz               | Table 33-41                              | —                                           | _                                                     | 0,1 | 0,1 | 0,1 |  |
| 25 MHz               | —                                        | Table 33-42                                 | _                                                     | 1   | 0,1 | 1   |  |
| 25 MHz               | —                                        | Table 33-43                                 |                                                       | 0   | 0,1 | 1   |  |
| 25 MHz               | —                                        | —                                           | Table 33-44                                           | 1   | 0   | 0   |  |
| 25 MHz               | —                                        | —                                           | Table 33-45                                           | 1   | 1   | 0   |  |
| 25 MHz               | _                                        | _                                           | Table 33-46                                           | 0   | 1   | 0   |  |
| 25 MHz               | _                                        | _                                           | Table 33-47                                           | 0   | 0   | 0   |  |

#### FIGURE 33-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS



| TABLE        | 33-60:       | ADCx CONVERSION (10-BIT M                                          | ODE) TI                         | MING R                | EQUIRE                             | MENTS                                     |                                                                             |
|--------------|--------------|--------------------------------------------------------------------|---------------------------------|-----------------------|------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|
| АС СН        | ARACTE       | RISTICS                                                            | Standar<br>(unless<br>Operation | rd Operat<br>otherwis | ing Conc<br>se stated)<br>ature -4 | litions (s<br>)<br>ł0°C ≤ Ta<br>ł0°C ≤ Ta | ee Note 1): 3.0V to 3.6V<br>≤ +85°C for Industrial<br>≤ +125°C for Extended |
| Param<br>No. | Symbol       | Characteristic                                                     | Min.                            | Тур. <sup>(4)</sup>   | Max.                               | Units                                     | Conditions                                                                  |
|              |              | Cloc                                                               | k Parame                        | eters                 |                                    |                                           |                                                                             |
| AD50         | TAD          | ADCx Clock Period                                                  | 75                              | _                     | _                                  | ns                                        |                                                                             |
| AD51         | tRC          | ADCx Internal RC Oscillator Period                                 | —                               | 250                   | _                                  | ns                                        |                                                                             |
|              |              | Con                                                                | version F                       | Rate                  |                                    |                                           |                                                                             |
| AD55         | tCONV        | Conversion Time                                                    | —                               | 12 Tad                | _                                  | —                                         |                                                                             |
| AD56         | FCNV         | Throughput Rate                                                    | —                               | —                     | 1.1                                | Msps                                      | Using simultaneous<br>sampling                                              |
| AD57a        | TSAMP        | Sample Time When Sampling Any ANx Input                            | 2 Tad                           | —                     |                                    | _                                         |                                                                             |
| AD57b        | TSAMP        | Sample Time When Sampling the<br>Op Amp Outputs                    | 4 Tad                           | —                     |                                    | _                                         |                                                                             |
|              |              | Timin                                                              | g Param                         | eters                 |                                    |                                           |                                                                             |
| AD60         | tPCS         | Conversion Start from Sample<br>Trigger <sup>(2)</sup>             | 2 Tad                           | _                     | 3 Tad                              | _                                         | Auto-convert trigger not<br>selected                                        |
| AD61         | tPSS         | Sample Start from Setting<br>Sample (SAMP) bit <sup>(2)</sup>      | 2 Tad                           | —                     | 3 Tad                              | _                                         |                                                                             |
| AD62         | tcss         | Conversion Completion to<br>Sample Start (ASAM = 1) <sup>(2)</sup> |                                 | 0.5 TAD               |                                    | -                                         |                                                                             |
| AD63         | <b>t</b> DPU | Time to Stabilize Analog Stage                                     |                                 |                       | 20                                 | μS                                        | (Note 3)                                                                    |

Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality Note 1: is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: The parameter, tDPU, is the time required for the ADCx module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON> = 1). During this time, the ADCx result is indeterminate.

4: These parameters are characterized, but not tested in manufacturing.

from ADC Off to ADC On<sup>(2)</sup>

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                          | MILLIMETERS |      |          |      |  |
|--------------------------|-------------|------|----------|------|--|
| Dimensio                 | MIN         | NOM  | MAX      |      |  |
| Contact Pitch            | E           |      | 0.50 BSC |      |  |
| Contact Pad Spacing      | C1          |      | 11.40    |      |  |
| Contact Pad Spacing      | C2          |      | 11.40    |      |  |
| Contact Pad Width (X64)  | X1          |      |          | 0.30 |  |
| Contact Pad Length (X64) | Y1          |      |          | 1.50 |  |
| Distance Between Pads    | G           | 0.20 |          |      |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

# 121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2