

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gm710t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle, effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGM3XX/6XX/7XX devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EP devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to "Data Memory" (DS70595) and "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual" for more details on EDS, PSV and table accesses.

On dsPIC33EP devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

3.4 Addressing Modes

The CPU supports these addressing modes:

- · Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

TABLE 4-10: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	-	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC2	0C46		PDC2<15:0> 0										0000					
PHASE2	0C48		PHASE2<15:0> 000									0000						
DTR2	0C4A	_	— — DTR2<13:0> 000								0000							
ALTDTR2	0C4C	_	ALTDTR2<13:0> 001										0000					
SDC2	0C4E								SDC2	<15:0>								0000
SPHASE2	0C50								SPHAS	E2<15:0>								0000
TRIG2	0C52								TRGCN	1P<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C78								PWMCA	P2<15:0>								0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	—	– – – LEB<11:0> 0'								0000						
AUXCON2	0C5E	_		—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0		_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON3	0C64	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC3	0C66		PDC3<15:0> 0										0000					
PHASE3	0C68		PHASE3<15:0> 000									0000						
DTR3	0C6A	_	DTR3<13:0> 000€									0000						
ALTDTR3	0C6C	_	— — ALTDTR3<13:0> 00									0000						
SDC3	0C6E								SDC3	<15:0>								0000
SPHASE3	0C70								SPHASE	E3<15:0>								0000
TRIG3	0C72								TRGCM	IP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0			_	_	_		TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMCA	P3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_		BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	LEB<11:0> 00									0000						
AUXCON3	0C7E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

														-				
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0	>			_							—	0000
RPINR1	06A2	_	_	—	—	_	_	_	—	_	INT2R<6:0>							0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_				T2CKR<6:0	>			0000
RPINR7	06AE	_				IC2R<6:0>	>			_				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>	>			—				IC3R<6:0>				0000
RPINR9	06B2	_				IC6R<6:0>	>			_				IC5R<6:0>				0000
RPINR10	06B4	_				IC8R<6:0>	>			_				IC7R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_				OCFAR<6:0	>			0000
RPINR12	06B8	—				FLT2R<6:0	>			—				FLT1R<6:0>	•			0000
RPINR14	06BC	—			(QEB1R<6:0)>			—				QEA1R<6:0	>			0000
RPINR15	06BE	_	HOME1R<6:0>						_			I	NDX1R<6:0	>			0000	
RPINR16	06C0	—			(QEB2R<6:0)>			—				QEA2R<6:0	>			0000
RPINR17	06C2	_			Н	OME2R<6:	:0>			_			I	NDX2R<6:0	>			0000
RPINR18	06C4	—	_	—	—	_	_	_	—	—				U1RXR<6:0	>			0000
RPINR19	06C6	—	—	_	—	_	_		—	_				U2RXR<6:0	>			0000
RPINR22	06CC	—		SCK2R<6:0>				-				SDI2R<6:0>				0000		
RPINR23	06CE	_	_	-	_	_	_	_	_	_				SS2R<6:0>				0000
RPINR24	06D0	_			(SCKR<6:0)>			_				CSDIR<6:0>	>			0000
RPINR25	06D2	_	_	-	_	_	_	_	_	_			(COFSR<6:0	>			0000
RPINR27	06D6	—			U	3CTSR<6:	0>			—				U3RXR<6:0	>			0000
RPINR28	06D8	—			U	4CTSR<6:	0>			_				U4RXR<6:0	>			0000
RPINR29	06DA	_			ç	SCK3R<6:0)>			_				SDI3R<6:0>				0000
RPINR30	06DC	_	_	_	_	_	_	_	_	_				SS3R<6:0>				0000
RPINR37	06EA	—			S	YNCI1R<6	:0>			—	—	—	—	—	_	—	—	0000
RPINR38	06EC	_	DTCMP1R<6:0>							_	-	-	_	-	_	_	-	0000
RPINR39	06EE	—			D	CMP3R<6	:0>			_			D.	TCMP2R<6:	0>			0000
RPINR40	06F0	_			D	CMP5R<6	:0>				DTCMP4R<6:0> 0						0000	
RPINR41	06F2		_	_	_	_	_		_	_			D	TCMP6R<6:	0>			0000

TABLE 4-34: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To _complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Watchdog Timer and Power-Saving Modes" (DS70615), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

The dsPIC33EPXXXGM3XX/6XX/7XX devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGM3XX/6XX/7XX devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGM3XX/6XX/7XX devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the Assembler Include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

TABLE 11-3:	OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)
IADEE II-J.	

Function	RPnR<5:0>	Output Name
Default Port	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
CSDO	001011	RPn tied to DCI Data Output
CSCK	001100	RPn tied to DCI Clock Output
COFS	001101	RPn tied to DCI Frame Sync
C1TX	001110	RPn tied to CAN1 Transmit
C2TX	001111	RPn tied to CAN2 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
OC5	010100	RPn tied to Output Compare 5 Output
OC6	010101	RPn tied to Output Compare 6 Output
OC7	010110	RPn tied to Output Compare 7 Output
OC8	010111	RPn tied to Output Compare 8 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
U3TX	011011	RPn tied to UART3 Transmit
U3RTS	011100	RPn tied to UART3 Ready-to-Send
U4TX	011101	RPn tied to UART4 Transmit
U4RTS	011110	RPn tied to UART4 Ready-to-Send
SDO3	011111	RPn tied to SPI3 Slave Output
SCK3	100000	RPn tied to SPI3 Clock Output
SS3	100001	RPn tied to SPI3 Slave Select
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output
SYNCO2	101110	RPn tied to PWM Secondary Time Base Sync Output
QEI1CCMP	101111	RPn tied to QEI1 Counter Comparator Output
QEI2CCMP	110000	RPn tied to QEI2 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4
C5OUT	110011	RPn tied to Comparator Output 5

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	—	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
dit 15							bit 8
	D 1	D 0					.
0-0	R-1			R-0	R-0	R-0	
	ICODE6	ICODES	ICODE4	ICODE3	ICODE2	ICODET	ICODE0
DIL 7							DILU
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
				0 200000			
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits				
	10000-11111	L = Reserved					
	01111 = Filte	r 15					
	•						
	•						
	00001 = Filte	r 1					
h # 7	00000 = Filte	r U tadi Daad aa fi	o'				
DIL 7		ted: Read as	U Cada hita				
DIL 0-0	1000101-111	11111 - Posor	ved				
	1000100 = F	IFO almost full	interrupt				
	1000011 = R	eceiver overflo	w interrupt				
	1000010 = W	/ake-up interru rror interrunt	pt				
	1000000 = N	o interrupt					
	•						
	•						
	0010000-011	11111 = Rese r	ved				
	0001111 = R	B15 buffer inte	rrupt				
	•						
	•						
	0001001 = R	B9 buffer interi	rupt				
	0001000 = R	B8 buffer inter	rupt				
	0000111 = T	RB6 buffer inte	errupt				
	0000101 = T	RB5 buffer inte	rrupt				
	0000100 = T	RB4 buffer inte	rrupt				
	0000011 = 1	RB3 buffer inte	errupt				
	0000001 = T	RB1 buffer inte	rrupt				
	0000000 = T	RB0 buffer inte	rrupt				

REGISTER 21-3: CxVEC: CANx INTERRUPT CODE REGISTER

BUFFER 21-5: CANx MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Byte	3<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Byte	2<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimpler	nented bit, rea	ead as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown	

bit 15-8 Byte 3<15:8>: CANx Message Byte 3

bit 7-0 Byte 2<7:0>: CANx Message Byte 2

BUFFER 21-6: CANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	5<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	4<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15 9			ao Puto F				
01010-0	Dyte 5<15:0	>: CAINX Messa	уе Буlе 5				

bit 7-0 Byte 4<7:0>: CANx Message Byte 4

r-0	r-0	r-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0					
r	r	r	r		BCG<11:8>							
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			BCG	6<7:0>								
bit 7							bit 0					
Legend:		r = Reserved	bit									
R = Readable	bit	W = Writable	U = Unimplen	nented bit, rea	d as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					

bit 15-12 Reserved: Read as '0'

bit 11-0 BCG<11:0>: DCI Bit Clock Generator Control bits

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 27-1: RTCC BLOCK DIAGRAM

Note: The RTCC is only operational on devices which include the SOSC; therefore, the RTCC module is not available on 44-pin devices.

dsPIC33EPXXXGM3XX/6XX/7XX

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
—	—	—	—	—	WDAY2	WDAY1	WDAY0				
bit 15							bit 8				
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15-11	Unimplemen	ted: Read as '	0'								
bit 10-8	WDAY<2:0>:	Binary Coded	Decimal Value	e of Weekday I	Digit bits						
	Contains a va	lue from 0 to 6									
bit 7-6	Unimplemented: Read as '0'										
bit 5-4	HRTEN<1:0>	: Binary Codec	d Decimal Valu	ue of Hour's Te	ens Digit bits						
	Contains a va	lue from 0 to 2			-						

REGISTER 27-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 27-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	1INONE2 MINONE1	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7		•				•	bit 0
I a manual.							

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

bit 3-0

REGISTER 27-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	MTHTEN0 MTHONE3		MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.
- bit 11-8 **MTHONE<3:0>:** Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

30.2 User ID Words

dsPIC33EPXXXGM3XX/6XX/7XX devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

The User ID Words register map is shown in Table 30-3.

TABLE 30-3: USER ID WORDS REGISTER MAP

File Name	Address	Bits<23:16>	Bits<15:0>
FUID0	0x800FF8		UID0
FUID1	0x800FFA	_	UID1
FUID2	0x800FFC	—	UID2
FUID3	0x800FFE		UID3

Legend: — = unimplemented, read as '1'.

30.3 On-Chip Voltage Regulator

All of the dsPIC33EPXXXGM3XX/6XX/7XX devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGM3XX/6XX/ 7XX family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 30-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 33-5, located in **Section 33.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 30-1: CONNECTIONS FOR THE

ON-CHIP VOLTAGE REGULATOR^(1,2,3)

30.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 33-21 of **Section 33.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage. Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,								
	refer to	the	"16-bit	MCU	and	DSC			
	Programmer's		Refe	erence	Manual"				
	(DS70157).							

Field	Description					
#text	Means literal defined by "text"					
(text)	Means "content of text"					
[text]	Means "the location addressed by text"					
{}	Optional field or operation					
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d					
<n:m></n:m>	Register bit field					
.b	Byte mode selection					
.d	Double-Word mode selection					
.S	Shadow register select					
.W	Word mode selection (default)					
Acc	One of two accumulators {A, B}					
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}					
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$					
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero					
Expr	Absolute address, label or expression (resolved by the linker)					
f	File register address ∈ {0x00000x1FFF}					
lit1	1-bit unsigned literal $\in \{0,1\}$					
lit4	4-bit unsigned literal ∈ {015}					
lit5	5-bit unsigned literal $\in \{031\}$					
lit8	8-bit unsigned literal ∈ {0255}					
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode					
lit14	14-bit unsigned literal ∈ {016384}					
lit16	16-bit unsigned literal ∈ {065535}					
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'					
None	Field does not require an entry, can be blank					
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate					
PC	Program Counter					
Slit10	10-bit signed literal ∈ {-512511}					
Slit16	16-bit signed literal ∈ {-3276832767}					
Slit6	6-bit signed literal ∈ {-1616}					
Wb	Base W register ∈ {W0W15}					
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }					
Wdo	Destination W register ∈					

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Dividend, Divisor Working register pair (direct addressing)

TABLE 31-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS

Wm,Wn

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: VBOR (min)V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
-		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	—	—	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	VBORMIN	—	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	_	10	—	mA		
D138a	Tww	Word Write Cycle Time	46.5	46.9	47.4	μs	Tww = 346 FRC cycles, Ta = +85°C (Note 2)	
D138b	Tww	Word Write Cycle Time	46.0	_	47.9	μs	Tww = 346 FRC cycles, Ta = +125°C (Note 2)	
D136a	TPE	Row Write Time	0.667	0.673	0.680	ms	Trw = 4965 FRC cycles, Ta = +85°C (Note 2)	
D136b	TPE	Row Write Time	0.660	—	0.687	ms	Trw = 4965 FRC cycles, Ta = +125°C (Note 2)	
D137a	TPE	Page Erase Time	19.6	20	20.1	ms	TPE = 146893 FRC cycles, TA = +85°C (Note 2)	
D137b	TPE	Page Erase Time	19.5	_	20.3	ms	TPE = 146893 FRC cycles, TA = +125°C (Note 2)	

TABLE 33-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 33-19) and the value of the FRC Oscillator Tuning register.

FIGURE 33-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 33-50: CANx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time	_	_	_	ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time	—	—		ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 33-36: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 33-51: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67	_	_	ns		
UA11	FBAUD	UARTx Baud Frequency	_	—	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

35.2 Package Details

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Lead Pitch	е	0.80 BSC					
Overall Height	Α	-	-	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	0.15				
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	¢	0°	3.5°	7°			
Overall Width	E	12.00 BSC					
Overall Length	D	12.00 BSC					
Molded Package Width	E1	10.00 BSC					
Molded Package Length	D1	10.00 BSC					
Lead Thickness	С	0.09	-	0.20			
Lead Width	b	0.30	0.37	0.45			
Mold Draft Angle Top	α	11°	12°	13°			
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

This is the initial released version of this document.

Revision B (June 2013)

Changes to Section 5.0 "Flash Program Memory", Register 5-1. Changes to Section 6.0 "Resets", Figure 6-1. Changes to Section 26.0 "Op Amp/Comparator Module", Register 26-2. Updates to most of the tables in Section 33.0 "Electrical Characteristics". Minor text edits throughout the document.

Revision C (September 2013)

Changes to Figure 23-1. Changes to Figure 26-2. Changes to Table 30-2. Changes to Section 33.0 "Electrical Characteristics". Added Section 34.0 "High-Temperature Electrical Characteristics" to the data sheet. Minor typographical edits throughout the document.

Revision D (August 2014)

This revision incorporates the following updates:

- Sections:
 - Updated Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers", Section 8.0 "Direct Memory Access (DMA)", Section 10.3 "Doze Mode", Section 21.0 "Controller Area Network (CAN) Module (dsPIC33EPXXXGM6XX/7XX Devices Only)", Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)", Section 23.1.2 "12-Bit ADCx Configuration", Section 21.4 "CAN Message Buffers", Section 35.0 "Packaging Information"
- · Figures:
 - Updated **"Pin Diagrams"**, Figure 1-1, Figure 9-1
- · Registers:
 - Updated Register 5-1, Register 8-2, Register 21-1, Register 23-2
- · Tables:
 - Updated Table 1-1, Table 7-1, Table 8-1, Table 34-9, Table 1, Table 4-2, Table 4-3, Table 4-25, Table 4-33, Table 4-34, Table 4-39, Table 4-30, Table 4-46, Table 4-47, Table 33-16, Table 34-8