

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm304-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾ (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply

- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
 - 3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

NOTES:

TABLE 7-1: INTERRUPT VECTOR DETAILS

	Vector	IRQ		Inte	Interrupt Bit Location			
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority		
	Highe	est Natura	I Order Priority					
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>		
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>		
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>		
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>		
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>		
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>		
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>		
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>		
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>		
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>		
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>		
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>		
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>		
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>		
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>		
Reserved	23	15	0x000032	_	_			
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>		
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>		
CMP1 – Comparator Combined Event	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>		
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>		
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>		
AD2 – ADC2 Convert Done	29	21	0x00003E	IFS1<5>	IEC1<5>	IPC5<6:4>		
IC7 – Input Capture 7	30	22	0x000040	IFS1<6>	IEC1<6>	IPC5<10:8>		
IC8 – Input Capture 8	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12>		
DMA2 – DMA Channel 2	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>		
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>		
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>		
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>		
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>		
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>		
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>		
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>		
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>		
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>		
C1RX – CAN1 RX Data Ready ⁽¹⁾	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>		
C1 – CAN1 Event ⁽¹⁾	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>		
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>		
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>		
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>		
IC5 – Input Capture 5	47	39	0x000062	IFS2<7>	IEC2<7>	IPC9<14:12>		
IC6 – Input Capture 6	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>		

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

2: This interrupt source is not available on 44-pin devices.

REGISTER 8-5: DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	—	_	_	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: DMA Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL X START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-		STB	<15:8>	-	-	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 **STB<15:0>:** DMA Secondary Start Address bits (source or destination)

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAI)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknowr			nown	

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		CNT<13:8> ⁽²⁾				
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	<7:0> (2)			
bit 7					bit 0		
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown		

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT2R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-7	Unimplemen	ted: Read as '	כ'				
bit 6-0 INT2R<6:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)							
1111100 = Input tied to RPI124							
•							
	•						
		put tied to CMI put tied to Vss					

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-30: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP35	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		RP20R<5:0>				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1':		'1' = Bit is set	'1' = Bit is set		ared	x = Bit is unknown	
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits						

2.1.1.0.0	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-31: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP37F	२<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		RP36R<5:0>				
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown		

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

			(1)
REGISTER 11-42:	RPOR12: PERIPHERAL	PIN SELECT OUTPUT	REGISTER 12 ⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-			RP127R	-		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP126R	<5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown
bit 15-14	Unimplem	ented: Read as '	0'				
bit 13-8		:0>: Peripheral C 11-3 for periphera	•	on is Assigned to F mbers)	RP127 Outp	ut Pin bits	
bit 7-6	Unimplem	ented: Read as '	0'				
bit 5-0	RP126R<5:0>: Peripheral Output Function is Assigned to RP126 Output Pin bits (see Table 11-3 for peripheral function numbers)						

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

dsPIC33EPXXXGM3XX/6XX/7XX

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x					
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA					
bit 7		4				~	bit C					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	QCAPEN: Q	Elx Position Co	ounter Input Ca	apture Enable	bit							
	1 = Index ma	atch event of ho	ome input trigg	ers a position	capture event							
			•		position capture	e event						
bit 14		EAx/QEBx/IND	-	ital Filter Enal	ole bit							
		digital filter is e		ssed)								
bit 13-11		 Input pin digital filter is disabled (bypassed) QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits 										
bit 15-11	111 = 1:128 clock divide											
		110 = 1:64 clock divide										
	101 = 1.32 clock divide											
	100 = 1:16 clock divide 011 = 1:8 clock divide											
	011 = 1.8 clock divide 010 = 1.4 clock divide											
	010 = 1.4 clock divide 001 = 1.2 clock divide											
	000 = 1:1 clo	ock divide										
bit 10-9		0>: QEIx Modu	-									
					$SxCNT \ge QEIx$	GEC						
		ITCMPx pin go ITCMPx pin go										
	00 = Output											
bit 8	SWPAB: Sw	ap QEAx and (QEBx Inputs bi	t								
		d QEBx are sv			ecoder logic							
	0 = QEAx an	d QEBx are no	t swapped									
1.11.7												
bit 7		OMEx Input Po	plarity Select b	it								
DIT /	1 = Input is ir	nverted	plarity Select b	it								
	1 = Input is ir 0 = Input is n	nverted lot inverted	-	it								
bit 6	1 = Input is ir 0 = Input is n IDXPOL: INE	nverted not inverted DXx Input Pola	-	it								
	1 = Input is ir 0 = Input is n	nverted not inverted DXx Input Pola nverted	-	it								
bit 6	1 = Input is ir 0 = Input is n IDXPOL: INE 1 = Input is ir 0 = Input is n	nverted lot inverted DXx Input Pola nverted lot inverted	ity Select bit	it								
	1 = Input is ir 0 = Input is n IDXPOL: INE 1 = Input is ir 0 = Input is n	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola	ity Select bit	it								
bit 6	1 = Input is ir 0 = Input is n IDXPOL: INE 1 = Input is ir 0 = Input is n QEBPOL: Q	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola inverted	ity Select bit	it								
bit 6	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is in 0 = Input is in	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola inverted	ity Select bit rity Select bit	it								
bit 6 bit 5	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is i 0 = Input is i QEAPOL: Q 1 = Input is i	nverted not inverted DXx Input Pola nverted not inverted EBx Input Pola not inverted EAx Input Pola inverted	ity Select bit rity Select bit	it								
bit 6 bit 5 bit 4	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is in QEAPOL: Q 1 = Input is in 0 = Input is in	nverted not inverted DXx Input Pola nverted EBx Input Pola inverted not inverted EAx Input Pola inverted not inverted not inverted	rity Select bit rity Select bit rity Select bit									
bit 6 bit 5	1 = Input is in 0 = Input is in IDXPOL: INE 1 = Input is in 0 = Input is in QEBPOL: Q 1 = Input is in QEAPOL: Q 1 = Input is in 0 = Input is in	nverted not inverted DXx Input Pola not inverted EBx Input Pola inverted not inverted EAx Input Pola inverted not inverted not inverted us of HOMEx Ir	rity Select bit rity Select bit rity Select bit		l bit							

REGISTER 17-2: QEIxIOC: QEIx I/O CONTROL REGISTER

© 2013-2014 Microchip Technology Inc.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware clears at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C; hardware clears at the end of the eighth bit of a master receive data byte
	0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins; hardware clears at the end of a master Stop sequence
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware clears at the end of a master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins; hardware clears at the end of a master Start sequence
	0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware sets or clears after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware sets when I2CxRCV is written with a received byte. Hardware clears when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
_	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0				
bit 15							bit 8				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0				
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	nd as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15-13	Unimplement	ted: Read as '	0'								
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits								
	10000-11111										
	01111 = Filter 15										
	•										
	• 00001 = Filter 1										
	00001 = Filter00000 = Filter										
bit 7		ted: Read as '	0'								
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits										
	1000101-1111111 = Reserved										
		IFO almost full eceiver overflo									
		ake-up interru									
	1000001 = E	rror interrupt									
	1000000 = N										
	•										
	•										
		.1111 = Resei B15 buffer inte									
	0001111 = RB15 buffer interrupt										
	•										
	• 0001001 = RB9 buffer interrupt										
		B8 buffer inter									
		RB7 buffer inte									
		RB6 buffer inte RB5 buffer inte									
		RB4 buffer inte									
		RB3 buffer inte	errupt								
	0000010 = T	RB2 buffer inte RB1 buffer inte									

REGISTER 21-3: CxVEC: CANx INTERRUPT CODE REGISTER

REGISTER 21-20: CxRXMnSID: CANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER REGISTER (n = 0-2)

		-						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	—	MIDE		EID17	EID16	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	OR	'1' = Bit is set		0' = Bit is cleared x = Bit is			unknown	
bit 15-5 bit 4 bit 3	1 = Includes 0 = Bit, SIDx, Unimplemen	Standard Identif bit, SIDx, in filte , is a don't care nted: Read as ' îter Receive Mc	er comparisor in filter comp 0'					
bit 2 bit 1-0	 1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit i the filter 0 = Matches either standard or extended address message if filters match (i.e., if (Filter SIDx) = (Message SIDx) or if (Filter SIDx/EIDx) = (Message SIDx/EIDx)) Unimplemented: Read as '0' EID<17:16>: Extended Identifier bits 1 = Includes bit, EIDx, in filter comparison 0 = Bit, EIDx, is a don't care in filter comparison 							

REGISTER 21-21: CxRXMnEID: CANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			EID	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown		

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Analog-to-Digital Converter (ADC)" (DS70621), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices have two ADC modules: ADC1 and ADC2. The ADC1 supports up to 49 analog input channels, while the ADC2 supports up to 32 analog input channels.

On ADCx, the AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC. Both ADC1 and ADC2 can be operated in 12-bit mode.

Note: The ADCx module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADCx CONFIGURATION

The 10-bit ADCx configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to 49 analog input pins
- · Connections to three internal op amps
- Connections to the Charge Time Measurement Unit (CTMU) and temperature measurement diode

- Channel selection and triggering can be controlled by the Peripheral Trigger Generator (PTG)
- External voltage reference input pins
- · Simultaneous sampling of:
 - Up to four analog input pins
 - Three op amp outputs
- · Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- · Selectable conversion trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADCx CONFIGURATION

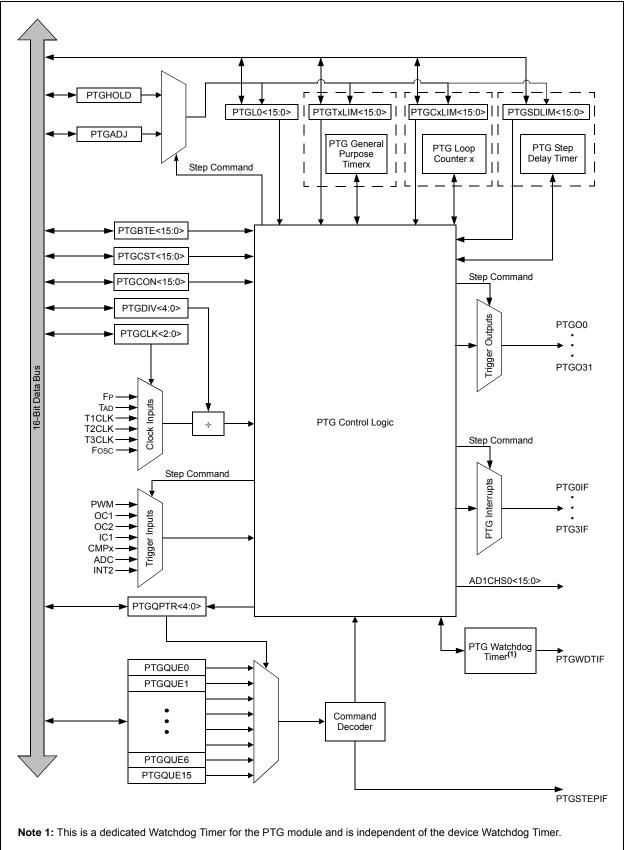
The 12-bit ADCx configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.
- Analog inputs, AN32-AN49, are not supported

The ADC1 has up to 49 analog inputs. The analog inputs, AN32 through AN49, are multiplexed, thus providing flexibility in using any of these analog inputs in addition to the analog inputs, AN0 through AN31. Since AN32 through AN49 are multiplexed, do not use two channels simultaneously, since it may result in erroneous output from the module. These analog inputs are shared with op amp inputs and outputs, comparator inputs and external voltage references. When op amp/ comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration, depends on the specific device.

A block diagram of the ADCx module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADCx conversion clock period.

REGISTER 23-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)


bit 6-2	SMPI<4:0>: Increment Rate bits
	When ADDMAEN = 0:
	x1111 = Generates interrupt after completion of every 16th sample/conversion operation
	x1110 = Generates interrupt after completion of every 15th sample/conversion operation
	•
	•
	x0001 = Generates interrupt after completion of every 2nd sample/conversion operation x0000 = Generates interrupt after completion of every sample/conversion operation
	When ADDMAEN = 1:
	11111 = Increments the DMA address after completion of every 32nd sample/conversion operation
	11110 = Increments the DMA address after completion of every 31st sample/conversion operation
	•
	•
	•
	00001 = Increments the DMA address after completion of every 2nd sample/conversion operation 00000 = Increments the DMA address after completion of every sample/conversion operation
bit 1	BUFM: Buffer Fill Mode Select bit
	1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt
	0 = Always starts filling the buffer from the Start address
bit 0	ALTS: Alternate Input Sample Mode Select bit
	1 = Uses channel input selects for Sample MUXA on the first sample and Sample MUXB on the next sample 0 = Always uses channel input selects for Sample MUXA
Note 1:	The '001', '010' and '011' bit combinations for VCFG<2:0> are not applicable on ADC2.

2: ADC2 does not support external VREF± inputs.

r-0	r-0	r-0	r-0	R-0	R-0	R-0	R-0
r	r	r	r	SLOT3	SLOT2	SLOT1	SLOT0
bit 15							bit
r-0	r-0	r-0	r-0	R-0	R-0	R-0	R-0
r	r	r	r	ROV	RFUL	TUNF	TMPTY
bit 7							bit
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkr	nown
	1111 = Slot 1 • • • • • • • • • • • • • • • • • • •	is currently ac is currently ac is currently ac	ctive ctive				
bit 7-4	Reserved: Re						
bit 3 bit 2	 ROV: Receive Overflow Status bit 1 = A receive overflow has occurred for at least one Receive register 0 = A receive overflow has not occurred RFUL: Receive Buffer Full Status bit 1 = New data is available in the Receive registers 						
bit 1	0 = The Rece TUNF: Transr 1 = A transmit 0 = A transmit	nit Buffer Under t underflow ha	erflow Status s occurred for	r at least one Tr	ransmit register	r	
bit 0	TMPTY: Trans 1 = The Trans 0 = The Trans	smit Buffer Err smit registers a	ipty Status bit are empty	-			

REGISTER 24-4: DCISTAT: DCI STATUS REGISTER

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER⁽³⁾ (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽¹⁾ 1 = Active-high (PMCS1/PMCS)⁽²⁾ 0 = Active-low (PMCS1/PMCS)
- bit 2 **BEP:** Byte Enable Polarity bit
 - 1 = Byte enable is active-high (PMBE)
 - 0 = Byte enable is active-low (PMBE)
- bit 1
 WRSP: Write Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Write strobe is active-high (PMWR)

 0 = Write strobe is active-low (PMWR)

 For Master Mode 1 (PMMODE<9:8> = 11):

 1 = Enables strobe active-high (PMENB)

 0 = Enables strobe active-low (PMENB)

 0 = Enables strobe active-low (PMENB)

 bit 0
 RDSP: Read Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Read strobe is active-high (PMRD)
 - 0 = Read strobe is active-ligh (PMRD)
 - 0 Read Strobe is active-low (FIVIRD)
 - For Master Mode 1 (PMMODE<9:8> = 11):
 - 1 = Enables strobe active-high (PMRD/PMWR)
 - 0 = Enables strobe active-low (PMRD/PMWR)
- **Note 1:** These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.
 - 3: This register is not available on 44-pin devices.

TABLE 33-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	erwise state	$-40^{\circ}C \le TA \le$	V to 3.6V +85°C for Industrial +125°C for Extended					
Parameter No.	Typ. ⁽²⁾	Max.	Units	Conditions							
Power-Down Current (IPD) (1)											
DC60d	35	100	μA	-40°C							
DC60c	40	200	μA	+25°C	3.3V	Base Power-Down Current					
DC60b	250	500	μA	+85°C	3.3V	Base Power-Down Current					
DC60c	1000	2500	μA	+125°C							
DC61d	8	10	μA	-40°C							
DC61c	10	15	μA	+25°C		Watchdog Timer Current: ΔIwDT ⁽³⁾					
DC61b	12	20	μA	+85°C	3.3V						
DC61c	13	25	μA	+125°C							

Note 1: IPD (Sleep) current is measured as follows:

CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with
 external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
 ITAC is disabled
- JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: } 3.0V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \end{array}$				
Parameter No.	Тур. ⁽²⁾	Max.	Doze Ratio	Units	Conditions		
Doze Current (IDOZE) ⁽¹⁾							
DC73a	20	53	1:2	mA	-40°C	3.3V	70 MIPS
DC73g	8	30	1:128	mA			
DC70a	19	53	1:2	mA	+25°C	3.3V	60 MIPS
DC70g	8	30	1:128	mA			
DC71a	20	53	1:2	mA	+85°C	3.3V	60 MIPS
DC71g	10	30	1:128	mA			
DC72a	25	42	1:2	mA	+125°C	3.3V	50 MIPS
DC72g	12	30	1:128	mA			

TABLE 33-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing

```
while(1)
{
NOP();
}
```

- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.