

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	·
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm304-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 7-1: dsPIC33EPXXXGM3XX/6XX/7XX INTERRUPT VECTOR TABLE

▲	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
ξ	Oscillator Fail Trap Vector	0x000004	
rior	Address Error Trap Vector	0x000006	
ч Г	Generic Hard Trap Vector	0x00008	
Orde	Stack Error Trap Vector	0x00000A	
ସ୍ (Math Error Trap Vector	0x00000C	
atur	DMA Controller Error Trap Vector	0x00000E	
Ž D	Generic Soft Trap Vector	0x000010	
Ising	Reserved	0x000012	
crea	Interrupt Vector 0	0x000014	
Dec	Interrupt Vector 1	0x000016	
	:	:	\backslash
	:	:	
۲	:	:	
2	Interrupt Vector 52	0x00007C	
	Interrupt Vector 53	0x00007E	
	Interrupt Vector 54	0x000080	\setminus
	:	:	See Table 7-1 for
	:	:	
	:	:	
	Interrupt Vector 116	0x0000FC	
	Interrupt Vector 117	0x0000FE	
	Interrupt Vector 118	0x000100	
	Interrupt Vector 119	0x000102	
	Interrupt Vector 120	0x000104	
	:	:	
	:	: /	/
	:	: /	
V	Interrupt Vector 244	0x0001FC /	
	Interrupt Vector 245	0x0001FE	
	START OF CODE	0x000200	

	Vector	r IRQ		Interrupt Bit Location		
Interrupt Source	# #		IVI Address	Flag	Enable	Priority
SPI3E – SPI3 Error	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
SPI3 – SPI3 Transfer Done	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>
Reserved	100-101	92-93	0x0000CC-0x0000CE	—	_	—
PWM1 – PWM Generator 1	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
PWM4 – PWM Generator 4	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
PWM5 – PWM Generator 5	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
PWM6 – PWM Generator 6	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>
Reserved	108-149	100-141	0x0000DC-0x00012E	—	—	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	—	—
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—		—
	Lowe	st Natura	Order Priority	•	•	

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

2: This interrupt source is not available on 44-pin devices.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access (DMA)" (DS70348), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM

In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare
- DCI
- PMP
- Timers

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- · CPU interrupt after half or full block transfer complete
- · Byte or word transfers
- Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM Start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	—	—
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	—
TMR3 – Timer3	00001000	_	_
TMR4 – Timer4	00011011	_	_
TMR5 – Timer5	00011100	_	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
SPI3 Transfer Done	01011011	0x02A8(SPI3BUF)	0x02A8(SPI3BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	_
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	—
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)
UART3RX – UART3 Receiver	01010010	0X0256(U3RXREG)	—
UART3TX – UART3 Transmitter	01010011	_	0X0254(U3TXREG)
UART4RX – UART4 Receiver	01011000	0X02B6(U4RXREG)	—
UART4TX – UART4 Transmitter	01011001	_	0X02B4(U4TXREG)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER 8-9:	DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

	11.0	11.0	11.0	11.0	11.0	11.0	11.0
U-0	0-0	U-0	U-0	0-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
D - Deedeble b	:.		4		a a wha al la it was al	aa (0)	

R = Readable bit	Readable bit W = Writable bit		as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
DSADR<15:8>									
bit 15 bit 8									
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			DSAI	DR<7:0>					
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable bit	t	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

REGISTER 11-30: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—			RP35	R<5:0>			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—			RP20R<5:0>					
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value at F	n = Value at POR (1' = Bit is set		'0' = Bit is cleared x = Bit is u		x = Bit is unkr	nown		
bit 15-14	Unimpleme	nted: Read as '	0'					
bit 13-8	RP35R<5:0>	Peripheral Ou	tput Function	n is Assigned to	RP35 Output	Pin bits		

	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-31: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_			RP37R<	<5:0>			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_		RP36R<5:0>					
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimpleme	nted bit, rea	ad as '0'		
-n = Value at P	t POR '1' = Bit is set '0' = Bit is			'0' = Bit is cleare	= Bit is cleared x = Bit is unknown			
							,	
bit 15-14	Unimpleme	nted: Read as '	0'					

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	_	_	_	_	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
	—	—		—		FRMDLY	SPIBEN				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable I	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	FRMEN: Fran	med SPIx Supp	ort bit								
	1 = Framed S	SPIx support is e	enabled (SSx	pin is used as	the Frame Syn	c pulse input/o	utput)				
	0 = Framed S	SPIx support is o	disabled								
bit 14	SPIFSD: SPI	x Frame Sync F	Pulse Directio	n Control bit							
	1 = Frame Sy 0 = Frame Sy	/nc pulse input (/nc pulse output	(slave) t (master)								
bit 13	FRMPOL: Fr	ame Sync Pulse	e Polarity bit								
	1 = Frame Sy	/nc pulse is acti	ve-high								
	0 = Frame Sy	/nc pulse is acti	ve-low								
bit 12-2	Unimplemen	ted: Read as '0)'								
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Select	bit							
	1 = Frame Sy	1 = Frame Sync pulse coincides with first bit clock									
	0 = Frame Sy	/nc pulse prece	des first bit cl	ock							
bit 0	SPIBEN: SPI	x Enhanced Bu	ffer Enable b	it							
	1 = Enhance	d Buffer is enab	led Jod (Standard	d maada)							
	0 = Enhance	a Buffer is disab	oled (Standard	a mode)							

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 21-1: CANX MODULE BLOCK DIAGRAM

21.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

25.2 PTG Control Registers

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER

DAMA		D 4 1 4 6	D 444 A		D 444 A	D 4 4 4 6	DALLA
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN		PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN	PTGIVIS
bit 15							bit 8
							· · · · · · · · · · · · · · · · · · ·
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
PTGSTRT	PTGWDTO		—	—	—	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit				
R = Readable	e bit	W = Writable b	it	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PTGEN: PTG	6 Module Enable	e bit				
	1 = PTG mod	lule is enabled					
	0 = PTG mod	lule is disabled					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	PTGSIDL: P	TG Stop in Idle N	/lode bit				
	1 = Discontin	ues module ope	ration when de	vice enters Idl	e mode		
	0 = Continue	s module operat	ion in Idle mod	e			
bit 12	PTGTOGL: F	PTG TRIG Outpu	ut Toggle Mode	bit			
	1 = Toggles	the state of the F	PTGOx for each	h execution of	the PTGTRIG C	command	
	value in t	the PTGPWDx b	oits	and will genera	ite a single PTC	SOX puise dele	imined by the
bit 11	Unimplemen	ted: Read as '0	,				
bit 10	PTGSWT: PT	G Software Trio	iaer bit ⁽²⁾				
	1 = Triagers f	the PTG module					
	0 = No action	(clearing this bi	it will have no e	effect)			
bit 9	PTGSSEN: F	TG Enable Sing	gle-Step bit				
	1 = Enables	Single-Step mod	le				
	0 = Disables	Single-Step mod	de				
bit 8	PTGIVIS: PT	G Counter/Time	r Visibility Cont	rol bit			
	1 = Reads o	f the PTGSDLI	M, PTGCxLIM	or PTGTxLIM	registers retur	n the current v	alues of their
	correspo	nding Counter/ I	Imer registers	(PIGSD, PIG	Cx, PIGIx)	ho valuo provio	uely writton to
	those PT	G Limit register		FIGIALIWITE	gisters return ti	ne value previo	
bit 7	PTGSTRT: S	tart PTG Seque	ncer bit				
2	1 = Starts to	sequentially exe	cute command	s (Continuous	mode)		
	0 = Stops exe	ecuting comman	ds	(,		
bit 6	PTGWDTO:	PTG Watchdog	Timer Time-out	Status bit			
	1 = PTG Wat	chdog Timer ha	s timed out				
	0 = PTG Wat	chdog Timer ha	s not timed out.				
bit 5-2	Unimplemen	ted: Read as '0	,				
Note 1: Th	nese bits apply t	to the PTGWHI a	nd ptgwlo cor	mmands only.			

2: This bit is only used with the PTGCTRL Step command software trigger option.

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

bit 1-0 PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾

- 11 = Single level detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
- 10 = Single level detect with step delay is executed on exit of command
- 01 = Continuous edge detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
- 00 = Continuous edge detect with step delay is executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - **2:** This bit is only used with the PTGCTRL Step command software trigger option.

REGISTER 25-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits

General purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	M<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT1LIM<7:0>							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General purpose Timer1 Limit register (effective only with a PTGT1 Step command).
- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 26-8: CVR2CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
	—	—	_	CVRR1	VREFSEL		—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:						(a)	
R = Readable	bit	W = Writable	bit		mented bit, read		
-n = Value at P	'OR	"1" = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkr	iown
bit 15 10	Unimplomon	tad. Dood oo '	۰ ۲				
Dit 13-12		narator Voltage) Deference E	Pango Soloctio	n hit		
DIL TT	See bit 5	parator voltage		ange Selectio			
bit 10	VREFSEL: Vo	oltage Reference	ce Select bit				
	1 = Reference	e source for inv	erting input is	from CVR2			
	0 = Reference	e source for inv	erting input is	from CVR1			
bit 9-8	Unimplement	ted: Read as ')'				
bit 7	CVREN: Com	parator Voltage	e Reference E	Enable bit			
	1 = Comparat 0 = Comparat	or voltage refe	rence circuit is rence circuit is	s powered on s powered dov	vn		
bit 6	CVROE: Com	parator Voltage	e Reference (Dutput Enable	on CVREF20 Pi	n bit	
	1 = Voltage le 0 = Voltage le	vel is output or vel is disconne	the CVREF20 cted from the) pin CVREF20 pin			
bit 11, 5	CVRR<1:0>:	Comparator Vo	ltage Referer	nce Range Sel	ection bits		
	11 = 0.00 CVF	RSRC to 0.94, w	/ith CVRSRC/1	6 step-size			
	10 = 0.33 CV	RSRC to 0.96, w	/ith CVRSRC/2	4 step-size			
	01 = 0.00 CVP 00 = 0.25 CVP	RSRC 10 0.67, W RSRC to 0.75. W	/ith CVRSRC/2	4 step-size 2 step-size			
bit 4	CVRSS: Com	parator Voltage	e Reference S	, Source Selection	on bit		
	1 = Comparat	or voltage refe	rence source,	CVRSRC = CV	/REF+ – AVSS		
	0 = Comparat	or voltage refe	rence source,	CVRSRC = AV	DD – AVss		
bit 3-0	CVR<3:0> Co	omparator Volta	ige Reference	e Value Selecti	on $0 \leq CVR < 3:0$)> ≤ 15 bits	
	$\frac{\text{When CVRR<1:0> = 11:}}{\text{CVREF} = (\text{CVR<3:0>/16)} \bullet (\text{CVRSRC})}$						
	When $CVRR<1:0 > = 10:$						
	CVREF = (1/3)	• (CVRSRC) +	(CVR<3:0>/2	4) • (CVRSRC)			
	When CVRR<	$\frac{(1:0)}{2<3(0)} = 01:$					
	When CVRR<	<1:0> = 00:	vroru)				
	$CVREF = (1/4) \bullet (CVRSRC) + (CVR<3:0>/32) \bullet (CVRSRC)$						

REGISTER 27-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legena:			
R = Readable bit V	V = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR '1	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
-----------	----------------------------

bit 10-8 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.

bit 7-6 Unimplemented: Read as '0'

- bit 5-4 **HRTEN<1:0>:** Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

dsPIC33EPXXXGM3XX/6XX/7XX

29.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

 $\begin{array}{c} x16+x12+x5+1\\ \text{ and }\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+\\ x7+x5+x4+x2+x+1 \end{array}$

To program these polynomials into the CRC generator, set the register bits as shown in Table 29-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 29-1:	CRC SETUP EXAMPLES FOR
	16 AND 32-BIT POLYNOMIAL

CBC Control	Bit Values				
Bits	16-Bit Polynomial	32-Bit Polynomial			
PLEN<4:0>	01111	11111			
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001			
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x			

33.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXXGM3XX/6XX/ 7XX AC characteristics and timing parameters.

TABLE 33-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				

FIGURE 33-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 33-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In l ² C™ mode

TABLE 33-31: QEIX INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units	Conditions
TQ50	TqIL	Filter Time to Recognize Low with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ51	TqiH	Filter Time to Recognize High with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 Тсү	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEAx and QEBx is shown for Position Counter Reset timing only. Shown for forward direction only (QEAx leads QEBx). Same timing applies for reverse direction (QEAx lags QEBx) but index pulse recognition occurs on falling edge.

FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 33-26: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions						
SP10	FscP	Maximum SCK1 Frequency		—	25	MHz	-40°C to +125°C (Note 3)		
SP20	TscF	SCK1 Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)		
SP21	TscR	SCK1 Output Rise Time	—		_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO1 Data Output Rise Time	—		_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20	_		ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-085C Sheet 1 of 2