

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm304-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description
	1	ST	Yes	Quadrature Encoder Index1 pulse input
HOME1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Home1 pulse input
QEA1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
	-			external clock input in Timer mode.
QEB1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
				external gate input in Timer mode.
CNTCMP1 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 1.
INDX2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Index2 Pulse input.
HOME2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home2 Pulse input.
QEA2 ⁽¹⁾	I.	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary timer
				external clock input in Timer mode.
QEB2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase B input in QEI2 mode. Auxiliary timer
				external gate input in Timer mode.
CNTCMP2 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 2.
COFS	I/O	ST	Yes	Data Converter Interface frame synchronization pin.
CSCK	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.
CSDI	1	ST	Yes	Data Converter Interface serial data input pin.
CSDO	0	—	Yes	Data Converter Interface serial data output pin.
C1RX	I	ST	Yes	CAN1 bus receive pin.
C1TX	0		Yes	CAN1 bus transmit pin
C2RX	I	ST	Yes	CAN2 bus receive pin.
C2TX	0	—	Yes	CAN2 bus transmit pin
RTCC	0		No	Real-Time Clock and Calendar alarm output.
CVREF	0	Analog	No	Comparator Voltage Reference output.
C1IN1+, C1IN2-,	I	Analog	No	Comparator 1 inputs.
C1IN1-, C1IN3-				
C1OUT	0	—	Yes	Comparator 1 output.
C2IN1+, C2IN2-,	Ι	Analog	No	Comparator 2 inputs.
C2IN1-, C2IN3-	-		.,	
C2001	0		Yes	Comparator 2 output.
C3IN1+, C3IN2-,	I	Analog	No	Comparator 3 inputs.
C2IN1-, C3IN3-			Vaa	Compositor 2 output
03001	0		res	
C4IN1+, C4IN2-,	I	Analog	No	Comparator 4 inputs.
C4IN1-, C4IN3-	~			
64001	U		res	
C5IN1-, C5IN2-,		Analog	No	Comparator 5 inputs.
C5IN3-, C5IN4-,				
C5IN1+			V	
C5001	0	—	Yes	Comparator 5 output.
Legend: CMOS = CM	10Scc	mnatible	input a	or output Analog = Analog input P = Power

TABLE 1-1:PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

I = Input

TABLE 4-17:	I2C1 AND I2C2 REGISTER MAP
-------------	----------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—		—	—		—	—				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				I2C1 Transr	nit Register				OOFF
I2C1BRG	0204							E	Baud Rate (Generator R	egister							0000
I2C1CON	0206	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT		_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	—		_	—						I2C1 Addr	ess Register					0000
I2C1MSK	020C	_	—		_	—					Ľ	2C1 Address	Mask Regis	ster				0000
I2C2RCV	0210	_	—		_	—		_	—				I2C2 Recei	ve Register				0000
I2C2TRN	0212	_	—		_	—		_	—				I2C2 Transr	nit Register				00FF
I2C2BRG	0214							E	Baud Rate C	Generator R	egister							0000
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT		_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	—		_	—						I2C2 Addr	ess Register					0000
I2C2MSK	021C		_	_	_	_	_				Ľ	2C2 Address	Mask Regis	ster				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_	UART1 Transmit Register x									xxxx
U1RXREG	0226	_	_	_	_	_	_	_	UART1 Transmit Register x UART1 Receive Register 0								0000	
U1BRG	0228							Ba	ud Rate 0	Generator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit Re	egister				xxxx
U2RXREG	0236	—	—	-	—	_	_	_				UART2	Receive Re	gister				0000
U2BRG	0238							Ba	ud Rate (Generator Pre	escaler							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PARALLEL MASTER/SLAVE PORT REGISTER MAP⁽²⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	—	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	CS2P	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0	0000
PMADDR ⁽¹⁾	0604	CS2	CS1					F	Parallel Port	Address R	egister (ADD	R<13:0>)						0000
PMDOUT1 ⁽¹⁾	0604						Para	allel Port Dat	ta Out Regis	ster 1 (Buffe	er Levels 0 a	nd 1)						0000
PMDOUT2	0606						Para	allel Port Dat	ta Out Regis	ster 2 (Buffe	er Levels 2 a	nd 3)						0000
PMDIN1	0608						Par	allel Port Da	ata In Regis	ter 1 (Buffe	r Levels 0 ar	ıd 1)						0000
PMDIN2	060A						Par	allel Port Da	ata In Regis	ter 2 (Buffe	r Levels 2 ar	ıd 3)						0000
PMAEN	060C								PTEN	<15:0>								0000
PMSTAT	060E	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF		_	OB3E	OB2E	OB1E	OB0E	008F

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the PMP module.

Note 1: PMADDR and PMDOUT1 are the same physical register, but are defined differently depending on the module's operating mode.

2: PMP is not present on 44-pin devices.

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGM6XX/7XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEIMD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD ⁽¹⁾	PMPMD	CRCMD	DACMD	QEI2MD	PWM2MD	U3MD	I2C3MD	I2C2MD	ADC2MD	0000
PMD4	0766	—	_	—	—	—	_	_	_	—	_	U4MD	_	REFOMD	CTMUMD	_		0000
PMD6	076A	—	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	—	_	—	_	—	_	_	SPI3MD	0000
													DMA0MD					
	0760												DMA1MD	DTOMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGMD	_	_	_	0000
													DMA3MD	1				1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The RTCCMD bit is not available on 44-pin devices.

TABLE 4-46: PORTA REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

								1			1		1		1		(1
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	TRISA	<15:14>	_			TRISA<	12:7>			—	—	TRISA4	-	—	TRISA	<1:0>	DF9F
PORTA	0E02	RA<1	5:14>	_			RA<12	2:7>			_	_	RA4	_	_	RA<	1:0>	0000
LATA	0E04	LATA<	15:14>	_			LATA<1	2:7>			_	_	LATA4	_	_	LATA	<1:0>	0000
ODCA	0E06	ODCA<	<15:14>	_			ODCA<	12:7>			_	_	ODCA4	_	_	ODCA	<1:0>	0000
CNENA	0E08	CNIEA	<15:14>	_			CNIEA<	12:7>			_	_	CNIEA4	_	_	CNIEA	<1:0>	0000
CNPUA	0E0A	CNPUA	<15:14>	_			CNPUA<	:12:7>			_	_	CNPUA4	_	_	CNPUA<1:0>		0000
CNPDA	0E0C	CNPDA	<15:14>				CNPDA<	:12:7>			_	_	CNPDA4	_	_	CNPDA<1:0>		0000
ANSELA	0E0E	ANSA<	<15:14>	_	ANSA<	12:11>		ANSA9	_	_	_	_	ANSA4		_	ANSA	<1:0>	1813

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTA REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
TRISA	0E00		—	_			TRISA<	12:7>				—	TRISA4	_	—	TRISA	<1:0>	DF9F	
PORTA	0E02	—	—	_			RA<12	:7>			_	_	RA4	-	—	RA<	0000		
LATA	0E04	—	_				LATA<1	2:7>			_	_	LATA4		_	LATA	LATA<1:0>		
ODCA	0E06	—	—	_			ODCA<	12:7>			_	—	ODCA4	-	—	ODCA	<1:0>	0000	
CNENA	0E08	—	—				CNIEA<	12:7>			—	_	CNIEA4		_	CNIEA	<1:0>	0000	
CNPUA	0E0A	—	_				CNPUA<	12:7>			_	_	CNPUA4		_	CNPU	4<1:0>	0000	
CNPDA	0E0C	—	—				CNPDA<	12:7>			_	—	CNPDA4		—	- CNPDA<1:0>			
ANSELA	0E0E	_	_		ANSA<	12:11>	_	ANSA9	_		_	_	ANSA4		_	ANSA<1:0>		1813	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTA REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_	_		TRISA	<10:7>		_	_		-	TRISA<4:0>			
PORTA	0E02	_	_	_	-	_	- RA<10:7> — RA<4:0>					0000						
LATA	0E04	_	_	_	_	—	LATA<10:7> — — LATA<4:0>					0000						
ODCA	0E06	_	_	_	_	—		ODCA.	<10:7>		—	_		(ODCA<4:0	>		0000
CNENA	0E08	—	_	—	—	—		CNIEA	<10:7>		_	—		(CNIEA<4:0	>		0000
CNPUA	0E0A	_	_	_	_	—	CNPUA<10:7>				—	_		C	NPUA<4:0	>		0000
CNPDA	0E0C	_	_	_	_	_	CNPDA<10:7>				_	_		C	NPDA<4:0	>		0000
ANSELA	0E0E	_	_	_	_	_	_	ANSA9	_	_	_	_	ANSA4	_		ANSA<2:0>	>	1813

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGM3XX/6XX/7XX architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EA). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an Extended Data Space (EDS) address, or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Figure 4-8. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> =1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS write address.

FIGURE 4-8: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = OCxRS compare event is used for synchronization 11110 = INT2 is the source for compare timer synchronization 11101 = INT1 is the source for compare timer synchronization 11100 = CTMU trigger is the source for compare timer synchronization 11011 = ADC1 interrupt is the source for compare timer synchronization 11010 = Analog Comparator 3 is the source for compare timer synchronization 11001 = Analog Comparator 2 is the source for compare timer synchronization 11000 = Analog Comparator 1 is the source for compare timer synchronization 10111 = Input Capture 8 interrupt is the source for compare timer synchronization 10110 = Input Capture 7 interrupt is the source for compare timer synchronization 10101 = Input Capture 6 interrupt is the source for compare timer synchronization 10100 = Input Capture 5 interrupt is the source for compare timer synchronization 10011 = Input Capture 4 interrupt is the source for compare timer synchronization 10010 = Input Capture 3 interrupt is the source for compare timer synchronization 10001 = Input Capture 2 interrupt is the source for compare timer synchronization 10000 = Input Capture 1 interrupt is the source for compare timer synchronization 01111 = GP Timer5 is the source for compare timer synchronization 01110 = GP Timer4 is the source for compare timer synchronization 01101 = GP Timer3 is the source for compare timer synchronization 01100 = GP Timer2 is the source for compare timer synchronization 01011 = GP Timer1 is the source for compare timer synchronization 01010 = PTGx trigger is the source for compare timer synchronization⁽³⁾ 01001 = Compare timer is unsynchronized 01000 = Output Compare 8 is the source for compare timer synchronization^(1,2) 00111 = Output Compare 7 is the source for compare timer synchronization^(1,2) 00110 = Output Compare 6 is the source for compare timer synchronization^(1,2) 00101 = Output Compare 5 is the source for compare timer synchronization^(1,2) 00100 = Output Compare 4 is the source for compare timer synchronization^(1,2) 00011 = Output Compare 3 is the source for compare timer synchronization^(1,2) 00010 = Output Compare 2 is the source for compare timer synchronization^(1,2) 00001 = Output Compare 1 is the source for compare timer synchronization^(1,2) 00000 = Compare timer is unsynchronized
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
 - 3: Each Output Compare x module (OCx) has one PTG Trigger/Sync source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO4 = OC1, OC5 PTGO5 = OC2, OC6 PTGO6 = OC3, OC7 PTGO7 = OC4, OC8

16.2 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2(1)	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:HC = Hardware Clearable bit		HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled
	0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending
	0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	1 = Active Period register is updated immediately
	0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
	0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	1 = External synchronization of primary time base is enabled
	0 = External synchronization of primary time base is disabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
•	

2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER (CONTINUED)

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS2	DMABS1	DMABS0	_			_	_
bit 15		<u>.</u>			•		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSA4	FSA3	FSA2	FSA1	FSA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13 bit 12-5 bit 4-0	DMABS<2:02 111 = Reserv 110 = 32 buff 101 = 24 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplemen FSA<4:0>: FI 11111 = Recc 11110 = Recc	•: DMA Buffer S red fers in RAM fers in RAM fers in RAM rs in RAM rs in RAM rs in RAM rs in RAM ted: Read as 'd IFO Area Starts eive Buffer RBS eive Buffer RBS	Size bits o' with Buffer b 31 30 Buffer TRB1 Buffer TRB1	its			

REGISTER 21-4: CxFCTRL: CANx FIFO CONTROL REGISTER

REGISTER 21-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| F15MSK1 | F15MSK0 | F14MSK1 | F14MSK0 | F13MSK1 | F13MSK0 | F12MSK1 | F12MSK0 |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask
bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bits 15-14)
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bits 15-14)
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bits 15-14)
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bits 15-14)
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bits 15-14)
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bits 15-14)
bit 1-0	F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bits 15-14)

REGISTER 21-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXO\	/F<15:8>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXO	VF<7:0>				
bit 7							bit 0	
Legend:		C = Writable I	bit, but only '	0' can be writter	to clear the b	it		
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C_0	R/C-0	R/C_0	R/C_0	R/C_0	R/C-0
100-0	100-0	100-0	100-0	100-0	100-0	100-0	100-0
			RXOVE	=<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOV	-<23:16>			
bit 7							bit 0
Legend:		C = Writable b	oit, but only 'C)' can be written	to clear the b	it	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u					x = Bit is unkr	nown	

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MO	D EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MO	D EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—
bit 7							bit 0
·							
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14	EDG1MOD: E 1 = Edge 1 is 0 = Edge 1 is EDG1POL: E 1 = Edge 1 is	Edge 1 Edge Sa edge-sensitive level-sensitive dge 1 Polarity	ampling Mode : e Select bit	Selection bit			
	0 = Edge 1 is	programmed f	for a negative e	edge response			
bit 13-10	EDG1SEL<3:	: 0>: Edge 1 So	urce Select bits	S			
	1111 = FOSC 1110 = OSCI 1101 = FRC (1100 = Reser 1011 = Intern 1010 = Reser 100x = Reser 01xx = Reser 0011 = CTEE 0010 = CTEE 0001 = OC1 r 0000 = Timer	pin oscillator rved al LPRC oscilla rved rved 01 pin 02 pin module 1 module	ator				
bit 9	EDG2STAT: E	Edge 2 Status b	pit				
	Indicates the : 1 = Edge 2 h 0 = Edge 2 h	status of Edge as occurred as not occurred	2 and can be v d	vritten to contro	ol the edge sou	rce.	
bit 8	EDG1STAT: E Indicates the s 1 = Edge 1 h 0 = Edge 1 h	Edge 1 Status b status of Edge as occurred as not occurred	bit 1 and can be v d	vritten to contro	ol the edge sou	rce.	
bit 7	EDG2MOD: E	Edge 2 Edge Sa	ampling Mode	Selection bit			
	1 = Edge 2 is 0 = Edge 2 is	s edge-sensitive s level-sensitive	9				
bit 6	EDG2POL: E	dge 2 Polarity	Select bit				
	1 = Edge 2 is 0 = Edge 2 is	programmed f programmed f	for a positive en for a negative e	dge response edge response			
Note 1:	If the TGEN bit is EDG2SELx bits fi	set to '1', then eld; otherwise,	the CMP1 module wil	dule should be Il not function.	selected as the	e Edge 2 sourc	e in the

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

25.2 PTG Control Registers

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER

	11.0	D/M/ 0		11.0			P/M/ 0
	0-0			0-0			
PIGEN		PIGSIDL	PIGIOGL		PIGSWI	PIGSSEN	PIGIVIS
DIC 15							DIL 8
D/M/ 0				11.0		D/M/ 0	DAM 0
		0-0	0-0	0-0	0-0		
bit 7	FIGWDIO		—	_	—	FIGHMIN	FIGITIVIO ⁽⁾
							bit 0
l egend:		HS = Hardware	Settable bit				
R = Readabl	e bit	W = Writable bi	it	U = Unimpler	mented bit rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
				o Dicio die			
bit 15	PTGEN. PTG	Module Enable	• hit				
Sit 10	1 = PTG mod	ule is enabled					
	0 = PTG mod	lule is disabled					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	PTGSIDL: P	TG Stop in Idle N	/lode bit				
	1 = Discontin	ues module ope	ration when de	vice enters Idl	e mode		
	0 = Continue	s module operat	ion in Idle mod	e			
bit 12	PTGTOGL: F	PTG TRIG Outpu	ut Toggle Mode	bit			
	1 = Toggles f	the state of the F		h execution of	the PTGTRIG C	command	rmined by the
	value in f	the PTGPWDx b	oits	and will genera	ite a single PTC	SOX puise dele	mined by the
bit 11	Unimplemen	ted: Read as '0	,				
bit 10	PTGSWT: PT	G Software Tric	laer bit ⁽²⁾				
	1 = Triggers t	he PTG module					
	0 = No action	(clearing this bi	t will have no e	effect)			
bit 9	PTGSSEN: F	TG Enable Sing	gle-Step bit				
	1 = Enables S	Single-Step mod	le				
		Single-Step mod					
bit 8	PIGIVIS: PI	G Counter/ lime	r Visibility Cont		registere retur	n the ourrest .	values of their
		nding Counter/T	imer registers	OPTGSD PTG	Cx PTGTx)	n the current w	alues of their
	0 = Reads of	f the PTGSDLIM	I, PTGCxLIM or	r PTGTxLIM re	gisters return t	he value previo	usly written to
	those PT	G Limit register	S				
bit 7	PTGSTRT: S	tart PTG Seque	ncer bit				
	1 = Starts to s	sequentially exe	cute command	s (Continuous	mode)		
	0 = Stops exe	ecuting comman	ds	o			
Dit 6	PTGWDTO:	PIG Watchdog	Timer Time-out	Status bit			
	1 = PIG Wat 0 = PTG Wat	chdog Timer has	s timed out				
bit 5-2		ited: Read as '0	,				
Note 1: T	hese bits apply t	to the PTGWHI a	nd PTGWLO cor	mmands only.			

2: This bit is only used with the PTGCTRL Step command software trigger option.

x = Bit is unknown

REGISTER 25-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGAI	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bi	t	U = Unimplei	mented bit, read	l as '0'	

'0' = Bit is cleared

REGISTER 25-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

'1' = Bit is set

-n = Value at POR

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGLC	<15:8>				
bit 15								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGL	0<7:0>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGL0<15:0>:** PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register with the PTGADD command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

27.3 RTCC Registers

REGISTER 27-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0		
bit 15		·				-	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	RTCEN: RTC	C Enable bit ⁽²⁾							
	1 = RTCC m	odule is enable	d						
L:1 4 4		odule is disable	ed o'						
DIT 14		TCC Value D	U naiotor Maito F	nahla hit					
DIE 13			egister virite E	the upor opplic	ation				
	0 = RTCVAL	register is lock	ed out from b	eing written to	by the user app	lication			
bit 12	RTCSYNC: R	RTCC Value Re	gister Read S	vnchronization	bit				
	1 = A rollove	r is about to oc	cur in 32 clocl	 edges (appro 	ximately 1 ms)				
	0 = A rollove	r will not occur							
bit 11	HALFSEC: H	lalf-Second Sta	tus bit ⁽³⁾						
	1 = Second h 0 = First half	nalf period of a period of a	second cond						
bit 10	RTCOE: RTC	C Output Enat	ole bit						
	1 = RTCC ou 0 = RTCC ou	utput is enabled	l d						
bit 9-8	RTCPTR<1:0	· >: RTCC Value	e Register Poi	nter bits					
	Points to the RTCPTR<1:0	e correspondi > value decren	ng RTCC Va	alue register	when reading RTCVAL regis	the RTCVAL ter until it reach	register; the		
bit 7-0	bit 7-0 CAI <7:0>: RTCC Drift Calibration bits								
	01111111 =	Maximum posi	tive adjustmer	nt; adds 508 R [.]	TCC clock puls	es every one m	ninute		
	•					-			
	•								
	00000001 = Minimum positive adjustment; adds 4 RTCC clock pulses every one minute								
11111111 = Minimum negative adjustment; subtracts 4 RTCC clock pulses every one minute									
	•								
	•								
	10000000 =	Maximum nega	ative adjustme	ent; subtracts 5	12 RTCC clock	pulses every o	one minute		
Note 1. The		nietor ie only of	facted by a D(סר					

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

REGISTER 28-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER (MASTER MODES ONLY)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8			
bit 15				·		•	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0			
bit 7				·		•	bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	Reset	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown			
bit 15 bit 14	CS2: Chip Set If PMCON<7: 1 = Chip Sete 0 = Chip Sete If PMCON<7: Bit functions a CS1: Chip Sete If PMCON<7: 1 = Chip Sete 0 = Chip Sete If PMCON<7: Bit functions a	elect 2 bit $6 \ge 10 \text{ or } 01$: $2 \ge 10 \text{ or } 01$: $2 \ge 10 \text{ or } 00$: $3 \ge 400 \text{ R}^3$. $4 \ge 10 \text{ or } 00$: $6 \ge 10 \text{ or } 00$: $6 \ge 10$: $2 \ge 10 \text{ or } 00$: $6 \ge 11 \text{ or } 0x$: $6 \ge 11 \text{ or } 0x$: $3 \ge 400 \text{ R}^4$.								
bit 13-0	ADDR<13:0>	: Destination A	ddress bits							

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two Data Buffer registers.

2: This register is not available on 44-pin devices.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f		1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU Wb,Ws,Wnd		Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US Wb,Ws,Wnd		Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU Wb,Ws,Wnd		Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 31-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)	١
			,

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
					-40°	$C \le TA \le$	+125°C for Extended		
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions						
	VIL	Input Low Voltage							
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V			
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant	0.8 Vdd	—	Vdd	V	(Note 3)		
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)		
		I/O Pins with SDAx, SCLx	0.8 Vdd	—	5.5	V	SMBus disabled		
		I/O Pins with SDAx, SCLx	2.1	—	5.5	V	SMBus enabled		
	ICNPU	Change Notification Pull-up Current							
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS		
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾							
DI31			20	50	100	μA	VDD = 3.3V, VPIN = VDD		

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 33-18: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-35:SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions					
SP10	FscP	Maximum SCKx Frequency		—	9	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.