

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm306-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle, effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGM3XX/6XX/7XX devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EP devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to "Data Memory" (DS70595) and "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual" for more details on EDS, PSV and table accesses.

On dsPIC33EP devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

3.4 Addressing Modes

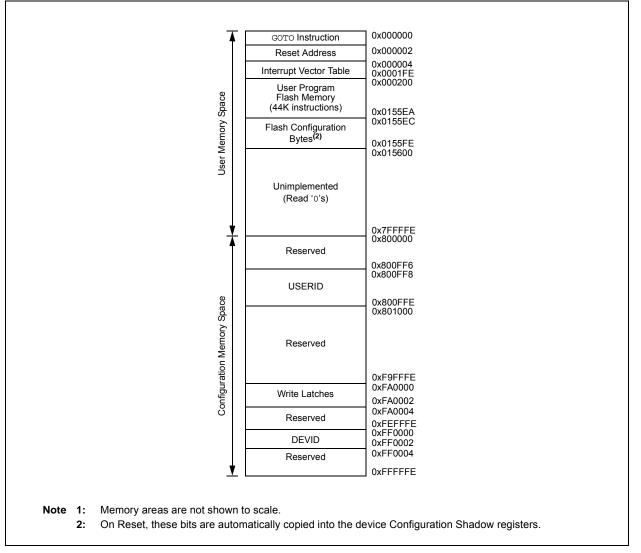
The CPU supports these addressing modes:

- · Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/ 7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Program Memory" (DS70613), which is available from the Microchip web site (www.microchip.com).


The dsPIC33EPXXXGM3XX/6XX/7XX family architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGM3XX/6XX/7XX devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.7 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-3.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP128GM3XX/6XX/7XX DEVICES⁽¹⁾

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD ⁽¹⁾	PMPMD	CRCMD	_	QEI2MD	_	U3MD	_	I2C2MD	ADC2MD	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	U4MD	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	SPI3MD	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				
PMD7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGMD	_	_	_	0000
													DMA3MD					

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 The RTCCMD bit is not available on 44-pin devices.

TABLE 7-1: INTERRUPT VECTOR DETAILS

	Vector	IRQ		Inte	Interrupt Bit Location			
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority		
	Highe	est Natura	I Order Priority					
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>		
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>		
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>		
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>		
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>		
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>		
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>		
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>		
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>		
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>		
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>		
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>		
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>		
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>		
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>		
Reserved	23	15	0x000032	_	_			
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>		
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>		
CMP1 – Comparator Combined Event	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>		
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>		
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>		
AD2 – ADC2 Convert Done	29	21	0x00003E	IFS1<5>	IEC1<5>	IPC5<6:4>		
IC7 – Input Capture 7	30	22	0x000040	IFS1<6>	IEC1<6>	IPC5<10:8>		
IC8 – Input Capture 8	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12>		
DMA2 – DMA Channel 2	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>		
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>		
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>		
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>		
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>		
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>		
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>		
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>		
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>		
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>		
C1RX – CAN1 RX Data Ready ⁽¹⁾	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>		
C1 – CAN1 Event ⁽¹⁾	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>		
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>		
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>		
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>		
IC5 – Input Capture 5	47	39	0x000062	IFS2<7>	IEC2<7>	IPC9<14:12>		
IC6 – Input Capture 6	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>		

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

2: This interrupt source is not available on 44-pin devices.

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
OC5 – Output Compare 5	49	41	0x000066	IFS2<9>	IEC2<9>	IPC10<6:4>
OC6 – Output Compare 6	50	42	0x000068	IFS2<10>	IEC2<10>	IPC10<10:8>
OC7 – Output Compare 7	51	43	0x00006A	IFS2<11>	IEC2<11>	IPC10<14:12>
OC8 – Output Compare 8	52	44	0x00006C	IFS2<12>	IEC2<12>	IPC11<2:0>
PMP – Parallel Master Port ⁽²⁾	53	45	0x00006E	IFS2<13>	IEC2<13>	IPC11<6:4>
Reserved	54	46	0x000070	_	_	_
T6 – Timer6	55	47	0x000072	IFS2<15>	IEC2<15>	IPC11<14:12>
T7 – Timer7	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
T8 – Timer8	59	51	0x00007A	IFS3<3>	IEC3<3>	IPC12<14:12>
T9 – Timer9	60	52	0x00007C	IFS3<4>	IEC3<4>	IPC13<2:0>
INT3 – External Interrupt 3	61	53	0x00007E	IFS3<5>	IEC3<5>	IPC13<6:4>
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>
C2RX – CAN2 RX Data Ready ⁽¹⁾	63	55	0x000082	IFS3<7>	IEC3<7>	IPC13<14:12>
C2 – CAN2 Event ⁽¹⁾	64	56	0x000084	IFS3<8>	IEC3<8>	IPC14<2:0>
PSEM – PCPWM Primary Event	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
QEI1 – QEI1 Position Counter Compare	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
DCIE – DCI Fault Interrupt	67	59	0x00008A	IFS3<11>	IEC3<11>	IPC14<14:12>
DCI – DCI Transfer Done	68	60	0x00008C	IFS3<12>	IEC3<12>	IPC15<2:0>
Reserved	69	61	0x00008E	—	—	_
RTCC – Real-Time Clock and Calendar ⁽²⁾	70	62	0x000090	IFS3<14>	IEC3<14>	IPC15<10:8>
Reserved	71-72	63-64	0x000092-0x000094	—	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	—	_
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
C2TX – CAN2 TX Data Request ⁽¹⁾	79	71	0x0000A2	IFS4<7>	IEC4<7>	IPC17<14:12>
Reserved	80	72	0x0000A4	—	—	-
PSESM – PCPWM Secondary Event	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
Reserved	82	74	0x0000A8	—	—	-
QEI2 – QEI2 Position Counter Compare	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
Reserved	84	76	0x0000AC	—	—	-
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-88	78-80	0x0000B0-0x0000B4	—	—	-
U3E – UART3 Error Interrupt	89	81	0x0000B6	IFS5<1>	IEC5<1>	IPC20<6:4>
U3RX – UART3 Receiver	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
U3TX – UART3 Transmitter	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
Reserved	92-94	84-86	0x0000BC-0x0000C0			—
U4E – UART4 Error Interrupt	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12>
U4RX – UART4 Receiver	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>
U4TX – UART4 Transmitter	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

2: This interrupt source is not available on 44-pin devices.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit (read/clear by application) ⁽⁵⁾
	1 = FSCM has detected clock failure0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enables Secondary Oscillator (SOSC)0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS70580), available from the Microchip web site for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This register resets only on a Power-on Reset (POR).
 - 4: Secondary Oscillator (SOSC) selection is valid on 64-pin and 100-pin devices, and defaults to FRC/N on 44-pin devices.
 - 5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 4	SPI2MD: SPI2 Module Disable bit
	1 = SPI2 module is disabled
	0 = SPI2 module is enabled
bit 3	SPI1MD: SPI1 Module Disable bit
	1 = SPI1 module is disabled
	0 = SPI1 module is enabled
bit 2	C2MD: CAN2 Module Disable bit ⁽¹⁾
	1 = CAN2 module is disabled
	0 = CAN2 module is enabled
bit 1	C1MD: CAN1 Module Disable bit ⁽¹⁾
	1 = CAN1 module is disabled
	0 = CAN1 module is enabled
bit 0	AD1MD: ADC1 Module Disable bit
	1 = ADC1 module is disabled
	0 = ADC1 module is enabled

Note 1: These bits are available on dsPIC33EPXXXGM6XX/7XX devices only.

REGISTER 11-30: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP35	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP20	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8		>: Peripheral Ou	•	•	RP35 Output	Pin bits	

2.1.1.0.0	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-31: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP37F	२<5:0>				
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—			RP36F	R<5:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 13-8 **RP37R<5:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP36R<5:0>:** Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-36: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP55	R<5:0>				
bit 15							bit 8		
U-0	U-0	R/W-0		D/M/ 0	D/M/ 0		DAM 0		
0-0	0-0	R/W-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				RP54	R<5:0>				
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimpleme	nted: Read as '	0'						
bit 13-8		Peripheral Out 1-3 for peripheral	•	n is Assigned to mbers)	RP55 Output I	Pin bits			
bit 7-6	Unimpleme	nted: Read as '	0'						
bit 5-0	RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits								

(see Table 11-3 for peripheral function numbers)

REGISTER 11-37: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP57R<	<5:0>				
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP56R<	<5:0>				
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	RP57R<5:0>	• Peripheral Ou	Itout Function	n is Assigned to RI	257 Output	Pin bits			

bit 13-8 **RP57R<5:0>:** Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP56R<5:0>:** Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 11-3 for peripheral function numbers)

13.1 Timer Control Registers

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON AND T8CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON		TSIDL	—	—	_	—			
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0		
	TGATE	TCKPS1	TCKPS0	T32	_	TCS ⁽¹⁾			
bit 7							bit 0		
Legend:									
R = Readable b		W = Writable		•	nented bit, rea				
-n = Value at P0	DR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
		a							
	TON: Timerx								
	When T32 = 1 1 = Starts 32-								
	0 = Stops 32-								
	When T32 = 0								
	1 = Starts 16-								
bit 14	0 = Stops 16-	ted: Read as '	٦ ³						
	-	x Stop in Idle M							
bit 15		ues module op		device enters l	dle mode				
		s module opera							
bit 12-7	Unimplemented: Read as '0'								
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit								
	When TCS = 1 :								
	This bit is igno								
	<u>When TCS = 0:</u> 1 = Gated time accumulation is enabled								
		e accumulation							
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits					
	11 = 1:256								
	10 = 1:64 01 = 1:8								
	01 = 1.0 00 = 1.1								
bit 3	T32: 32-Bit Timer Mode Select bit								
	1 = Timerx an	nd Timery form	a single 32-bi	t timer					
	0 = Timerx and Timery act as two 16-bit timers								
		ted: Read as '							
		Clock Source S							
		clock is from pir	n, TxCK (on th	e rising edge)					
	0 = Internal cl								
bit 0	Unimplomen	ted: Read as '	ר י						

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXGM3XX/6XX/7XX devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring: PWMLOCK = 0.

To gain write access to these locked registers, the user application must write two consecutive values of 0xABCD and 0x4321 to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWM1 WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

1	pulled high externally in order to clear and disable the fault register requires unlock sequence	
<pre>mov #0xabcd, w10 mov #0x4321, w11 mov #0x0000, w0 mov w10, PWMKEY mov w11, PWMKEY mov w0, FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>	
-	and polarity using the IOCON1 register register requires unlock sequence	
<pre>mov #0xabcd, w10 mov #0x4321, w11 mov #0xF000, w0 mov w10, PWMKEY mov w11, PWMKEY mov w0, IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>	

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- bit 1-0 PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 10 = Single level detect with step delay is executed on exit of command
 - 01 = Continuous edge detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 00 = Continuous edge detect with step delay is executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - **2:** This bit is only used with the PTGCTRL Step command software trigger option.

bit 3-0	Step Command	OPTION<3:0>	Option Description		
	PTGWHI(1)	0000	PWM Special Event Trigger		
	or (1)	0001	PWM master time base synchronization output		
	PTGWLO(1)	0010	PWM1 interrupt		
		0011	PWM2 interrupt		
		0100	PWM3 interrupt		
		0101	PWM4 interrupt		
		0110	PWM5 interrupt		
		0111	OC1 Trigger Event		
		1000	OC2 Trigger Event		
		1001	IC1 Trigger Event		
		1010	CMP1 Trigger Event		
		1011	CMP2 Trigger Event		
		1100	CMP3 Trigger Event		
		1101	CMP4 Trigger Event		
		1110	ADC conversion done interrupt		
		1111	INT2 external interrupt		
	PTGIRQ(1)	0000	Generate PTG Interrupt 0		
		0001	Generate PTG Interrupt 1		
		0010	Generate PTG Interrupt 2		
		0011	Generate PTG Interrupt 3		
		0100	Reserved		
		•	•		
		•	•		
		1111	Reserved		
	PTGTRIG ⁽²⁾	00000	PTGO0		
	1 1011110	00001	PTGO1		
		•	•		
		•	•		
		•	•		
		11110	PTGO30		
		11111	PTGO31		

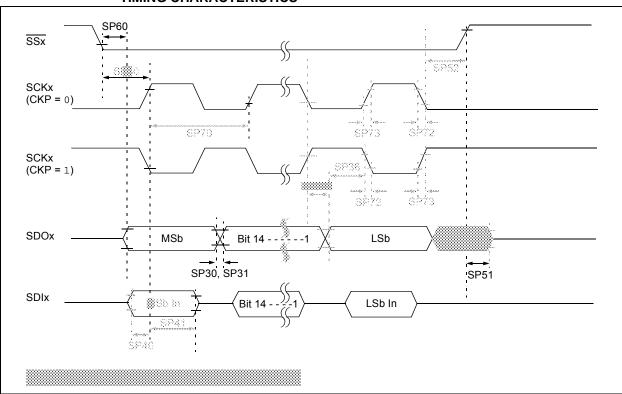
TABLE 25-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

DC CHARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No. Typ. ⁽²⁾ Max.			Doze Ratio	Units	Conditions		
Doze Current (IDOZE) ⁽¹⁾							
DC73a	20	53	1:2	mA	-40°C	3.3V	70 MIPS
DC73g	8	30	1:128	mA			70 MIPS
DC70a	19	53	1:2	mA	+25°C	3.3V	60 MIPS
DC70g	8	30	1:128	mA	+25 C		
DC71a	20	53	1:2	mA	. 05%0	3.3V	60 MIPS
DC71g	10	30	1:128	mA	+85°C		
DC72a	25	42	1:2	mA	+125°C	3.3V	50 MIPS
DC72g	12	30	1:128	mA	+125 C		50 MIPS

TABLE 33-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)


Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing

```
while(1)
{
NOP();
}
```

- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

FIGURE 33-20: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

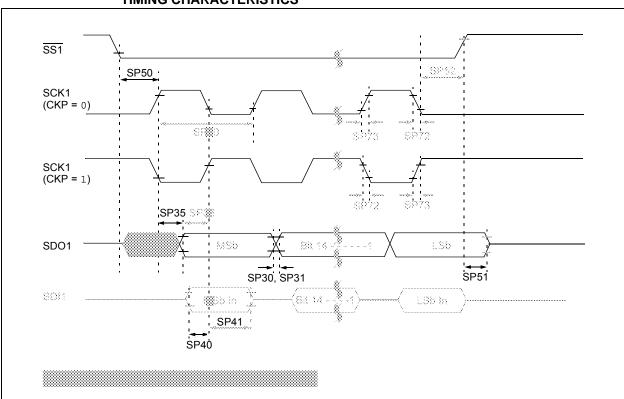


FIGURE 33-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	/ILLIMETER	S	
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	N	64			
Pitch	е		0.50 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E		9.00 BSC		
Exposed Pad Width	E2	7.05	7.15	7.50	
Overall Length	D		9.00 BSC		
Exposed Pad Length	D2	7.05	7.15	7.50	
Contact Width	b	0.18	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

PMP Pinout and Connections to	
External Devices	
Programmer's Model	
PTG Module	
QEIx Module	
Recommended Minimum Connection	22
Remappable Input for U1RX	
Reset System	
RTCC Module	
Shared Port Structure	
Single-Phase Synchronous Buck Converter	25
SPIx Module	
Suggested Oscillator Circuit Placement	23
Type B Timer (Timer2/4/6/8)	214
Type B/Type C Timer Pair (32-Bit Timer)	
Type C Timer (Timer3/5/7/9)	
UARTx Module	
User-Programmable Blanking Function	
Watchdog Timer (WDT)	417
Brown-out Reset (BOR)	416

С

C Compilers MPLAB XC Compilers		430
CAN Module		430
Control Registers		207
Message Buffers		
Word 0		
Word 1		
Word 2		
Word 3		
Word 4		
Word 5		
Word 6		
Word 7		
Modes of Operation		
Overview		
CAN Module (CAN)		
Charge Time Measurement Unit (CTMU)		
Code Examples		
IC1 Connection to HOME1 QEI1 Digital		
Filter Input on Pin 43		. 166
PORTB Write/Read		. 164
PWM1 Write-Protected Register		
Unlock Sequence		230
PWRSAV Instruction Syntax		153
Code Protection	.411,	418
CodeGuard Security	.411,	418
Configuration Bits		.411
Description		.413
CPU		27
Addressing Modes		
Arithmetic Logic Unit (ALU)		
Control Registers		
Data Space Addressing		27
DSP Engine		35
Instruction Set		27
Programmer's Model		
Register Descriptions		29
CTMU		
Control Registers		
Customer Change Notification Service		536
Customer Notification Service		
Customer Support		536

D

Data Address Space
Memory Map for 128-Kbyte Devices
Memory Map for 256-Kbyte Devices
Memory Map for 512-Kbyte Devices
Near Data Space 41
Organization and Alignment 41
SFR Space 41
Width 41
Data Converter Interface (DCI) Module
Data Memory
Arbitration and Bus Master Priority
DC Characteristics
Brown-out Reset (BOR) 443
CTMU Current Source 490
Doze Current (IDOZE) 439, 501
Filter Capacitor (CEFC) Specifications 435
High Temperature 500
I/O Pin Input Specifications 440
I/O Pin Output Specifications 443, 502
Idle Current (IIDLE)
Op Amp/Comparator Specifications 488
Op Amp/Comparator Voltage
Reference Specifications 489
Operating Current (IDD) 436, 501
Operating MIPS vs. Voltage 434, 500
Power-Down Current (IPD) 438, 500
Program Memory 444, 502
Temperature and Voltage 500
Temperature and Voltage Specifications
Thermal Operating Conditions
Thermal Packaging Characteristics
DCI
Control Registers 344
Introduction 343
Demo/Development Boards, Evaluation
and Starter Kits 432
Development Support 429
Third-Party Tools 432
DMA Controller
Channel to Peripheral Associations 130
Control Registers 132
DMAxCNT 132
DMAxCON 132
DMAxPAD 132
DMAxREQ 132
DMAxSTAL/H 132
DMAxSTBL/H 132
Supported Peripherals 129
Doze Mode 155
E

Electrical Characteristics	433
AC	445, 503
Equations	
Device Operating Frequency	144
Fosc Calculation	144
Fvco Calculation	144
Errata	12

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support