

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm306t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

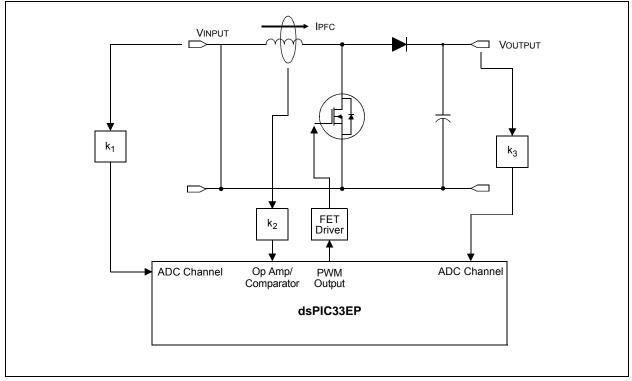
2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers
- Dual motor control

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾ (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply

- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
 - 3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

TABLE 4-28: CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES ⁽¹⁾ (CONTINUED	TABLE 4-28 :	CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FO)R dsPIC33EPXXXGM60X/7XX DEVICES ⁽¹⁾ (CONTINUED)
--	---------------------	---	---

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx
C2RXF11EID	D 056E EID<15:0>										xxxx							
C2RXF12SID	0570	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C2RXF12EID	EID<15:0>										xxxx							
C2RXF13SID	0574	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	—	EID17	EID16	xxxx
C2RXF13EID	0576								E	ID<15:0>								xxxx
C2RXF14SID	0578	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	—	EID17	EID16	xxxx
C2RXF14EID	D 057A EID<15:0>										xxxx							
C2RXF15SID	057C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	_	EID17	EID16	xxxx
C2RXF15EID	057E								E	ID<15:0>								xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-29: PROGRAMMABLE CRC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 15 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 F									All Resets						
CRCCON1	0640	CRCEN	RCEN - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN 0								0000							
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644		X<15:1> —									0000						
CRCXORH	0646		X<31:16>									0000						
CRCDATL	0648							CRC E	Data Input Lo	w Word Re	egister							0000
CRCDATH	064A							CRC D	ata Input Hi	gh Word Re	egister							0000
CRCWDATL	064C		CRC Result Low Word Register									0000						
CRCWDATH	064E							CRC	Result High	Word Reg	ister							0000

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKI	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	oit	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

bit 15-8 Unimplemented: Read as '0'

-n = Value at POR

bit 7-0 NVMKEY<7:0>: NVM Key Register (write-only) bits

'1' = Bit is set

REGISTER 5-5: NVMSRCADRH: NONVOLATILE DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRCAD	DRH<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADRH<23:16>: Nonvolatile Data Memory Upper Address bits

x = Bit is unknown

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 7-1: dsPIC33EPXXXGM3XX/6XX/7XX INTERRUPT VECTOR TABLE

▲	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
£	Oscillator Fail Trap Vector	0x000004	
rior	Address Error Trap Vector	0x000006	
ር አ	Generic Hard Trap Vector	0x000008	
Orde	Stack Error Trap Vector	0x00000A	
ផ្ទ	Math Error Trap Vector	0x00000C	
atur	DMA Controller Error Trap Vector	0x00000E	
ž b	Generic Soft Trap Vector	0x000010	
Decreasing Natural Order Priority	Reserved	0x000012	
crea	Interrupt Vector 0	0x000014	
Dec	Interrupt Vector 1	0x000016	
	:	:	
,	:	:	
ĭ	:	:	
2	Interrupt Vector 52	0x00007C	
	Interrupt Vector 53	0x00007E	
	Interrupt Vector 54	0x000080	\backslash
	:	:	See Table 7-1 for
	:	:	Interrupt Vector Details
	:	:	
	Interrupt Vector 116	0x0000FC	
	Interrupt Vector 117	0x0000FE	
	Interrupt Vector 118	0x000100	
	Interrupt Vector 119	0x000102	
	Interrupt Vector 120	0x000104	
	:	:	
	:	:	
	:	:	
V	Interrupt Vector 244	0x0001FC	
	Interrupt Vector 245	0x0001FE	/
	START OF CODE	0x000200	

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	_	_	_
bit 15	·						bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
—	—	—	_		LSTCH	<3:0>	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as 'o	o'				
bit 3-0	LSTCH<3:0>	: Last DMA Co	ntroller Chanr	nel Active Statu	is bits		
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sin	ice system Res	set		
	•						
	•						
	•						
	0010 = Last o 0001 = Last o	rved data transfer wa data transfer wa data transfer wa	as handled by as handled by	Channel 2 Channel 1			

0000 = Last data transfer was handled by Channel 0

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

Legend: R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
bit 7							bit 0
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

bit 15-8 **IC8MD:IC1MD:** Input Capture x (x = 1-8) Module Disable bits

'1' = Bit is set

1 = Input Capture x module is disabled

-n = Value at POR

0 = Input Capture x module is enabled

bit 7-0 OC8MD:OC1MD: Output Compare x (x = 1-8) Module Disable bits

1 = Output Compare x module is disabled

0 = Output Compare x module is enabled

x = Bit is unknown

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				QEB2R<6:0>	•		
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEA2R<6:0>	•		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	nown		
bit 14-8 bit 7 bit 6-0	(see Table 1 1111111 = I 0000001 = I 0000000 = I Unimplement QEA2R<6:03		selection nur 127 P1 0' I2 Phase A (C	nbers) QEA2) to the Co		n/RPIn Pin bits RPn/RPIn Pin bit	s
	1111111 = • • • • • •	1-2 for input pin nput tied to RP ⁻ nput tied to CM nput tied to Vss	127 P1	nbers)			

REGISTER 11-12: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode
		 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		<u>When Set to '⊥':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		<u>When Set to 'o':</u> If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened. If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWMx generator uses the secondary master time base for synchronization and as the clock source for the PWMx generation logic (if secondary time base is available) 0 = PWMx generator uses the primary master time base for synchronization and as the clock source for the PWMx generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
bit 1		0 = Edge-Aligned mode is enabled XPRES: External PWMx Reset Control bit ⁽⁵⁾
DILI		 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
bit 0		 0 = External pins do not affect the PWMx time base IUE: Immediate Update Enable bit⁽²⁾
DILU		 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 17-17: INTxTMRH: INTERVAL TIMERx HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMERx LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTTM	IR<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTT	/IR<7:0>			
						bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0	INTTM R/W-0 R/W-0 R/W-0 INTTM Dit W = Writable bit	INTTMR<15:8> R/W-0 R/W-0 R/W-0 INTTMR<7:0> INTTMR<7:0>	INTTMR<15:8> R/W-0 R/W-0 R/W-0 INTTMR<7:0>	INTTMR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 INTTMR<7:0> Dit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

21.3 CAN Control Registers

REGISTER 21-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	_	CANCAP	—		WIN
bit 7	•			•			bit 0
Legend:							
R = Readable I	bit	W = Writable b	pit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-14	Unimplemen	ted: Read as '0)'				

bit 13	CSIDL: CANx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	 ABAT: Abort All Pending Transmissions bit 1 = Signals all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit 1 = FCAN is equal to 2 * FP 0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Set Configuration mode 011 = Set Listen Only mode 010 = Set Loopback mode 001 = Set Disable mode 000 = Set Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit 1 = Enables input capture based on CAN message receive 0 = Disables CAN capture
bit 2-1 bit 0	Unimplemented: Read as '0' WIN: SFR Map Window Select bit 1 = Uses filter window 0 = Uses buffer window

REGISTER 21-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXOV	F<15:8>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
RXOVF<7:0>								
bit 7							bit 0	
Legend:		C = Writable b	oit, but only '()' can be written	to clear the b	it		
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXOVF<31:24>									
bit 15 bit 8									
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
RXOVF<23:16>									
bit 7 bit 0									
Legend: C = Writable bit, but only '0' can be written to clear the bit									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
•									

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 15	•	•		•	•		bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—			
bit 7	•	•		•	•		bit 0			
Legend:										
R = Readable	bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit						
	•	edge-sensitive								
	•	level-sensitive								
bit 14		dge 1 Polarity								
		programmed f programmed f								
bit 13-10	-	:0>: Edge 1 So	-							
DIL 13-10	1111 = Fosc	0>. Euge 130		5						
	1110 = OSCI	pin								
	1101 = FRC oscillator									
	1100 = Reserved 1011 = Internal LPRC oscillator									
	1011 = Intern 1010 = Reser		itor							
	1010 = Reser 100x = Reser									
	01xx = Reser									
	0011 = CTED									
	0010 = CTED 0001 = OC1 r	•								
	0001 = OCT1									
bit 9		Edge 2 Status b	it							
		-		vritten to contro	I the edge sou	rce.				
	1 = Edge 2 h	as occurred			0					
	0 = Edge 2 ha	as not occurred	1							
bit 8		Edge 1 Status b								
		-	1 and can be v	vritten to contro	ol the edge sour	rce.				
	1 = Edge 1 ha	as occurred as not occurred	I							
bit 7	•	Edge 2 Edge Sa		Selection bit						
		edge-sensitive								
	-	level-sensitive								
bit 6	EDG2POL: E	dge 2 Polarity	Select bit							
		programmed f								
	0 = Edge 2 is	programmed f	or a negative e	edge response						
	he TGEN bit is 0G2SELx bits fi				selected as the	e Edge 2 sourc	e in the			

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_		SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15		·	•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7(2)	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-13 bit 12-8	Unimplemen	ived from syste ted: Read as '(Auto-Sample T AD)'				
	• • 00001 = 1 TA 00000 = 0 TA	D					
bit 7-0	11111111 = • • • • • • • • • • • • • • • • • • •	ADCx Convers TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7:	0> + 1) = TP • 0> + 1) = TP • 0> + 1) = TP •	256 = Tad 3 = Tad 2 = Tad			
	nis bit is only use nis bit is not usec		•	,	nd SSRCG (AD	1CON1<4>) =	0.

REGISTER 23-3: ADXCONS: ADCX CONTROL REGISTER 3	REGISTER 23-3:	ADxCON3: ADCx CONTROL REGISTER 3
---	----------------	----------------------------------

Г

АС СНА	ARACTERIS	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			or Industrial		
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N			ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N			ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from E Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

TABLE 33-23: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS . .

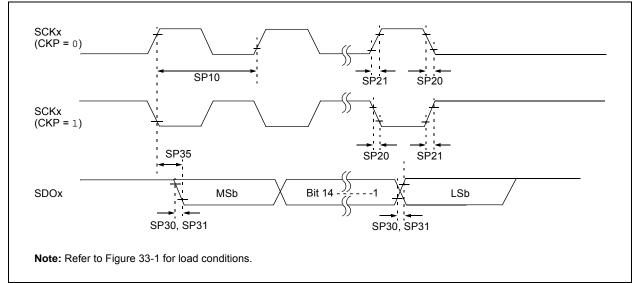
... ~

.

.

.

Note 1: These parameters are characterized, but are not tested in manufacturing.


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charae	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TC10	ТтхН	TxCK High Time	Synchronous	Tcy + 20	_	_	ns	Must also meet Parameter TC15
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40	_	—	ns	N = Prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from I Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 33-32:	SPI2 AND SPI3 MAXIMUM DATA/CLOCK RATE SUMMARY
---------------------	---

AC CHARA	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 33-33	_	—	0,1	0,1	0,1	
9 MHz	—	Table 33-34	—	1	0,1	1	
9 MHz	—	Table 33-35	—	0	0,1	1	
15 MHz	—	—	Table 33-36	1	0	0	
11 MHz	_	_	Table 33-37	1	1	0	
15 MHz	_	_	Table 33-38	0	1	0	
11 MHz	_	_	Table 33-39	0	0	0	

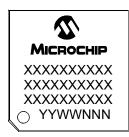
FIGURE 33-15: SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 33-59:	ADCx CONVERSION (12-BIT MODE) TIMING REQUIREMENTS
--------------	-------------------	-------------	-----------------------

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions
		Clock	k Parame	ters			•
AD50	TAD	ADCx Clock Period	117.6	_		ns	
AD51	tRC	ADCx Internal RC Oscillator Period		250		ns	
		Conv	version R	ate			
AD55	tCONV	Conversion Time	_	14 Tad		ns	
AD56	FCNV	Throughput Rate	_	—	500	ksps	
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	3 Tad	—		_	
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	3 Tad	—		_	
		Timin	g Parame	ters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	—	3 Tad	—	Auto-convert trigger is not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	—	3 Tad	_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	_	0.5 TAD	—		
AD63	tdpu	Time to Stabilize Analog Stage from ADCx Off to ADCx On ⁽¹⁾	_	—	20	μS	(Note 3)

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.


3: The parameter, tDPU, is the time required for the ADCx module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADCx result is indeterminate.

4: These parameters are characterized, but not tested in manufacturing.

35.0 PACKAGING INFORMATION

35.1 Package Marking Information

44-Lead TQFP (10x10x1 mm)

44-Lead QFN (8x8x0.9 mm)

Example

Example

64-Lead QFN (9x9x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.