

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm310-e-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾ (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply

- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
 - 3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

IABLE 4	4-0:	00	IPUIC			SIER W	AP											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	Itput Comp	are 1 Seco	ondary Regis	ter						xxxx
OC1R	0906								Output	Compare 7	1 Register							xxxx
OC1TMR	0908							Out	tput Comp	are 1 Time	r Value Regis	ster						xxxx
OC2CON1	090A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	-	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	Itput Comp	oare 2 Seco	ondary Regis	ter						xxxx
OC2R	0910								Output	Compare 2	2 Register							xxxx
OC2TMR	0912						-	Ou	tput Comp	are 2 Time	r Value Regis	ster		-				xxxx
OC3CON1	0914	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Comp	are 3 Seco	ondary Regis	ter						xxxx
OC3R	091A								Output	Compare 3	3 Register							xxxx
OC3TMR	091C						-	Ou	tput Comp	are 3 Time	r Value Regis	ster		-				xxxx
OC4CON1	091E	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Comp	oare 4 Seco	ondary Regis	ter						xxxx
OC4R	0924								Output	Compare 4	4 Register							xxxx
OC4TMR	0926							Ou	tput Comp	are 4 Time	r Value Regis	ster						xxxx
OC5CON1	0928		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	092C							Ou	tput Comp	are 5 Seco	ondary Regis	ter						xxxx
OC5R	092E								Output	Compare &	5 Register							xxxx
OC5TMR	0930							Ou	tput Comp	are 5 Time	r Value Regis	ster						xxxx
OC6CON1	0932	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	0936		Output Compare 6 Secondary Register										xxxx					
OC6R	0938								Output	Compare 6	6 Register							xxxx
OC6TMR	093A	Output Compare 6 Timer Value Register									xxxx							

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS70000600), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGM3XX/6XX/7XX CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- · Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGM3XX/6XX/7XX Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 151 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGM3XX/6XX/7XX devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

TABLE 7-1: INTERRUPT VECTOR DETAILS

	Vector	IRQ		Inte	Interrupt Bit Location			
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority		
	Highe	est Natura	I Order Priority					
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>		
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>		
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>		
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>		
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>		
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>		
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>		
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>		
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>		
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>		
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>		
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>		
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>		
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>		
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>		
Reserved	23	15	0x000032	_	_			
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>		
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>		
CMP1 – Comparator Combined Event	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>		
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>		
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>		
AD2 – ADC2 Convert Done	29	21	0x00003E	IFS1<5>	IEC1<5>	IPC5<6:4>		
IC7 – Input Capture 7	30	22	0x000040	IFS1<6>	IEC1<6>	IPC5<10:8>		
IC8 – Input Capture 8	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12>		
DMA2 – DMA Channel 2	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>		
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>		
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>		
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>		
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>		
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>		
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>		
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>		
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>		
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>		
C1RX – CAN1 RX Data Ready ⁽¹⁾	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>		
C1 – CAN1 Event ⁽¹⁾	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>		
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>		
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>		
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>		
IC5 – Input Capture 5	47	39	0x000062	IFS2<7>	IEC2<7>	IPC9<14:12>		
IC6 – Input Capture 6	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>		

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

2: This interrupt source is not available on 44-pin devices.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
GIE	DISI	SWTRAP		—		—						
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
	—	—	—	—	INT2EP	INT1EP	INT0EP					
bit 7							bit 0					
1												
Legend:	1- 1-14		- :4			(0)						
R = Readab		W = Writable I	JIC	-	mented bit, read							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15		ntorrunt Enchla	hit									
DIC 15		nterrupt Enable and associate		re enabled								
		are disabled, t										
bit 14	DISI: DISI In	struction Statu	s bit									
		truction is active										
		truction is not a										
bit 13		SWTRAP: Software Trap Status bit										
		trap is enabled trap is disabled										
bit 12-3		ted: Read as '										
bit 2	-			t Polarity Selec	t bit							
		on negative edg	•	,								
	0 = Interrupt o	on positive edg	e									
bit 1	INT1EP: Exte	IT1EP: External Interrupt 1 Edge Detect Polarity Select bit										
		on negative edg										
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detec	t Polarity Selec	t bit							
		on negative edg										
	0 = Interrupt o	on positive edg	e									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—		_	—	_	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
P - Peadable bit		M = M/ritable bi	t		monted hit read	ae 'O'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
DSADR<15:8>										
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			DSAD)R<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						own				

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

Legend: R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'	
bit 7							bit 0
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

bit 15-8 **IC8MD:IC1MD:** Input Capture x (x = 1-8) Module Disable bits

'1' = Bit is set

1 = Input Capture x module is disabled

-n = Value at POR

0 = Input Capture x module is enabled

bit 7-0 OC8MD:OC1MD: Output Compare x (x = 1-8) Module Disable bits

1 = Output Compare x module is disabled

0 = Output Compare x module is enabled

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	—		_	_	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	T2CKR<6:0>						
bit 7	·						bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-7	Unimplemer	nted: Read as '	0'				
bit 6-0		 Assign Timer. 1-2 for input pin 		· /	he Correspondi	ng RPn pin bits	3
	1111100 = 	nput tied to RPI	124				
	•						
	•						

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2013-2014 Microchip Technology Inc.

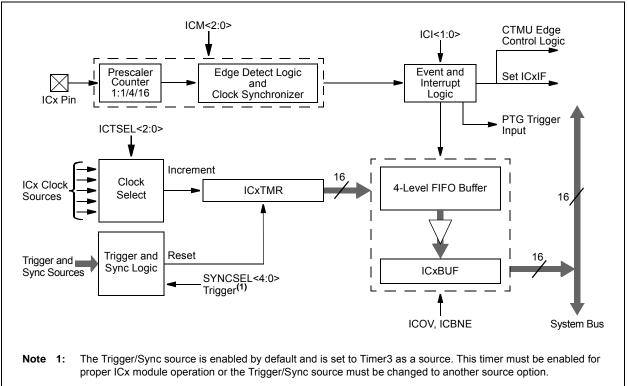
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15	·			· · · ·		·	bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				SS2R<6:0>				
bit 7	·						bit 0	
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		(4) = D		'0' = Bit is clea	arad	x = Bit is unknown		
	at POR	'1' = Bit is set		U = BIL IS CIER	areu	X – DILIS ULIKI	IOWI	
	at POR	I = BILIS Set			areu		IOWI	
bit 15-7		ted: Read as '					IOWII	
	Unimplemen SS2R<6:0>:	ted: Read as '	^{0'} ave Select (S	S2) to the Corre			IOWI	
bit 15-7	Unimplemen SS2R<6:0>: (see Table 11	ted: Read as ' Assign SPI2 SI	^{0'} ave Select (S selection nur	S2) to the Corre				
bit 15-7	Unimplemen SS2R<6:0>: (see Table 11	ted: Read as ' Assign SPI2 SI -2 for input pin	^{0'} ave Select (S selection nur	S2) to the Corre			IOWIT	
bit 15-7	Unimplemen SS2R<6:0>: (see Table 11	ted: Read as ' Assign SPI2 SI -2 for input pin	^{0'} ave Select (S selection nur	S2) to the Corre				
bit 15-7	Unimplemen SS2R<6:0>: . (see Table 11 1111100 = Ir	ted: Read as ' Assign SPI2 SI -2 for input pin nput tied to RPI	^{0'} ave Select (S selection nur I124	S2) to the Corre			10W11	
bit 15-7	Unimplemen SS2R<6:0>: . (see Table 11 1111100 = Ir	ted: Read as ' Assign SPI2 SI -2 for input pin	^{0'} ave Select (S selection nur I124 P1	S2) to the Corre				

REGISTER 11-17: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

			(1)
REGISTER 11-42:	RPOR12: PERIPHERAL	PIN SELECT OUTPUT	REGISTER 12 ⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
-	-			RP127R	-				
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP126R	<5:0>				
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown		
bit 15-14	Unimplem	ented: Read as '	0'						
bit 13-8		:0>: Peripheral C 11-3 for periphera	•	on is Assigned to F mbers)	RP127 Outp	ut Pin bits			
bit 7-6	Unimplem	ented: Read as '	0'						
bit 5-0	•								

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.


14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture" (DS70000352), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

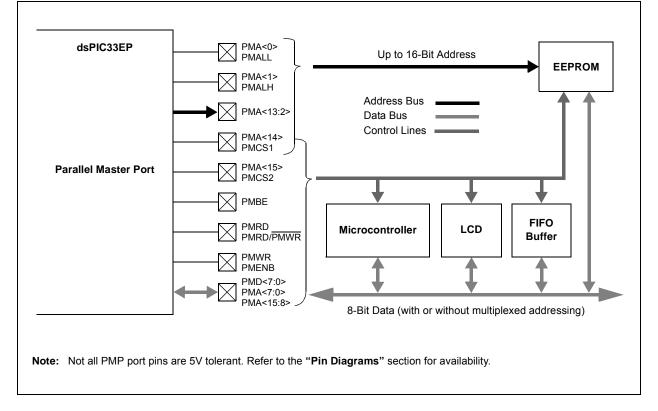
The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGM3XX/6XX/7XX devices support up to eight input capture channels.

Key features of the input capture module include:

- Hardware configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

FIGURE 14-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

28.0 PARALLEL MASTER PORT (PMP)


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Parallel Master Port (PMP)" (DS70576), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

NOTES:

DC CHARACTER	Standard C (unless oth Operating t	herwise s	tated) ⁻ e -40°C	≤ Ta ≤ +8	o 3.6V 5°C for Industrial 25°C for Extended		
Parameter No.	Doze Ratio	Units		Conditions			
Doze Current (IDOZE) ⁽¹⁾							
DC73a	20	53	1:2	mA	-40°C	3.3V	70 MIPS
DC73g	8	30	1:128	mA	-40 C	3.3V	
DC70a	19	53	1:2	mA	+25°C	3.3V	
DC70g	8	30	1:128	mA	+25 C		60 MIPS
DC71a	20	53	1:2	mA	+85°C	3.3V	
DC71g	10	30	1:128	mA	+00 C	3.3V	60 MIPS
DC72a	25	42	1:2	mA	+125°C	3.3V	
DC72g	12	30	1:128	mA	+125 C	3.3V	50 MIPS

TABLE 33-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing

```
while(1)
{
NOP();
}
```

- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

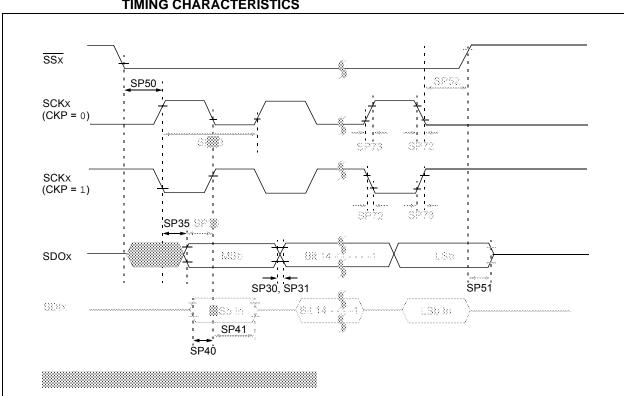


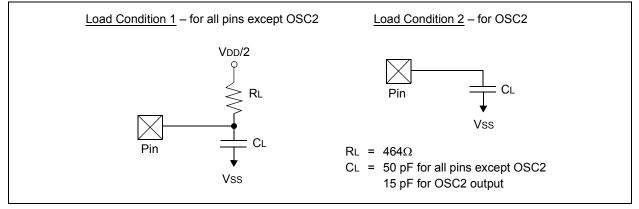
FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

	ARACTER	ADCX MODULE SPECIF	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	-40 C	≤ IA ≤ + Units	Conditions	
			Device	Supply	/	•		
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	—	Lesser of: VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V		
		·	Reference	ce Inpu	ts		·	
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVDD	V	(Note 1) VREFH = VREF+, VREFL = VREF-	
AD05a			3.0	_	3.6	V	VREFH = AVDD, VREFL = AVSS = 0	
AD06	VREFL	Reference Voltage Low	AVss		AVDD - 2.7	V	(Note 1)	
AD06a			0		0	V	VREFH = AVDD, VREFL = AVSS = 0	
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	VREF = VREFH – VREFL	
AD08	IREF	Current Drain	_		10 600	μΑ μΑ	ADC off ADC on	
AD09	Iad	Operating Current	—	5	—	mA	ADC operating in 10-bit mode (Note 1)	
			—	2		mA	ADC operating in 12-bit mode (Note 1)	
			Analog	g Input				
AD12	Vinh	Input Voltage Range, Vinn	VINL	_	Vrefh	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range, ViNL	VREFL		AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_		200	Ω	Impedance to achieve maximum performance of ADC	

TABLE 33-56: ADCx MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

34.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33EPXXXGM3XX/6XX/7XX AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in **Section 33.2 "AC Characteristics and Timing Parameters"**, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 33.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 34-10: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

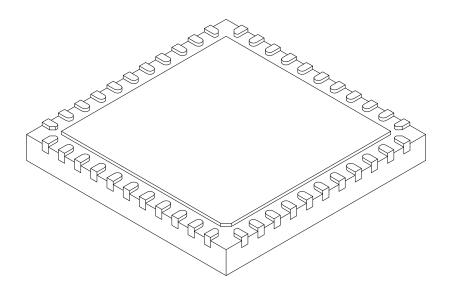

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ Operating voltage VDD range as described in Table 34-1.	
--------------------	--	--

FIGURE 34-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS				
Dimension	MIN	NOM	MAX			
Number of Pins	А		44			
Pitch	е		0.65 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3		0.20 REF			
Overall Width	Е		8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D		8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E		9.00 BSC			
Exposed Pad Width	E2	7.05	7.15	7.50		
Overall Length	D		9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.50		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support