

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm310-e-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX PRODUCT FAMILY

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

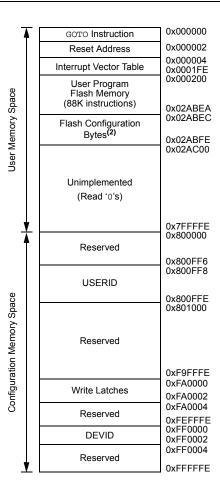

	()				R	ema	ppab	le P	eripł	neral	s														
Device	Program Flash Memory (Kbytes)	RAM (Kbytes)	CAN	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM (Channels)	QEI	UART	(1)SPI	DCI	External Interrupts ⁽²⁾	I²C™	CRC Generator	ADC	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	ЪТG	dWd	RTCC	I/O Pins	Pins	Packages	
dsPIC33EP128GM304	128	16	0																						
dsPIC33EP128GM604	120	10	2																						
dsPIC33EP256GM304	256	32	0	9/4	8	8	12	2	4	3	1	5	2	1	2	18	4/5	1	Yes	No	No	35	44	TQFP,	
dsPIC33EP256GM604	250	32	2	9/4	0	0			4	3	1	5	2		2	10	4/5	1	res	INU	NO	35	44	QFN	
dsPIC33EP512GM304	512	48	0																						
dsPIC33EP512GM604	512	40	2																						
dsPIC33EP128GM306	128	16	0																						
dsPIC33EP128GM706	120	10	2																						
dsPIC33EP256GM306	256	32	0	9/4	8	8	12	2	4	3	1	5	2	1	2	30	4/5	1	Yes	Yes	Yes	53	64	TQFP,	
dsPIC33EP256GM706	250	32	2	9/4	0	0	12	2	4	3	1	5	2		2	30	4/5	1	res	165	res	55	04	QFN	
dsPIC33EP512GM306	512	48	0																						
dsPIC33EP512GM706	512	40	2																						
dsPIC33EP128GM310	128	16	0																						
dsPIC33EP128GM710	120	8 16	2																						
dsPIC33EP256GM310	256	256 32	0	9/4	8	8	12	2	4	3	1	5	2	1	2	49	4/5	1	Yes	Yes	Yes	85	100/	TQFP,	
dsPIC33EP256GM710	200	256 32	2		0	0	12	2	7	5	1	5	2		2	43	4/5		103	163	163	00	121	TFBGA	
dsPIC33EP512GM310	512	512 48	0	ļ																					
dsPIC33EP512GM710	512	40	2																						

TABLE 1: dsPIC33EPXXXGM3XX/6XX/7XX FAMILY DEVICES

Note 1: Only SPI2 and SPI3 are remappable.

2: INT0 is not remappable.

Note 1: Memory areas are not shown to scale.

2: On Reset, these bits are automatically copied into the device Configuration Shadow registers.

TABLE 4-21: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DCICON1	0280	DCIEN	r	DCISIDL	r	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	r	r	r	COFSM1	COFSM0	0000
DCICON2	0282	r	r	r	r	BLEN1	BLEN0	r	COFSG3	COFSG2	COFSG1	COFSG0	r	WS3	WS2	WS1	WS0	0000
DCICON3	0284	r	r	r	r		BCG<11:0>					0000						
DCISTAT	0286	r	r	r	r	SLOT3	SLOT2	SLOT1	SLOT0	r	r	r	r	ROV	RFUL	TUNF	TMPTY	0000
TSCON	0288		TSE<15:0> 0000								0000							
RSCON	028C		RSE<15:0> 0000								0000							
RXBUF0	0290							F	Receive 0 D	ata Registe	r							uuuu
RXBUF1	0292							F	Receive 1 D	ata Registe	r							uuuu
RXBUF2	0294							F	Receive 2 D	ata Registe	r							uuuu
RXBUF3	0296							F	Receive 3 D	ata Registe	r							uuuu
TXBUF0	0298		Transmit 0 Data Register 0000								0000							
TXBUF1	029A							T	ransmit 1 D	ata Registe	r							0000
TXBUF2	029C							Г	ransmit 2 D	ata Registe	r							0000
TXBUF3	029E							I	ransmit 3 D	ata Registe	r							0000
Lanardi		L				1 (a) D												

Legend: u = unchanged; r = reserved; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	-			RP35F	R<5:0>			_	_			RP20	R<5:0>			0000
RPOR1	0682	_	—		RP37R<5:0>					—	_			RP36	R<5:0>			0000
RPOR2	0684		—		RP39R<5:0>					—	_	RP38R<5:0>						0000
RPOR3	0686		—			RP41F	۲<5:0>			—	_	RP40R<5:0>						0000
RPOR4	0688		—			RP43F	R<5:0>			—		RP42R<5:0>						0000
RPOR5	068A		—		RP49R<5:0>					—		RP48R<5:0>						0000
RPOR6	068C		—		RP55R<5:0>					—		RP54R<5:0>						0000
RPOR7	068E		—		RP57R<5:0>					_	_			RP56	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

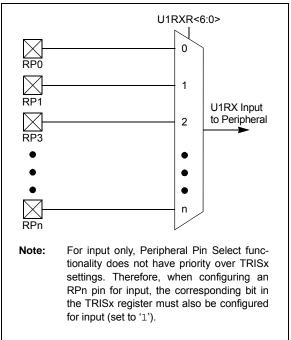
TABLE 4-31: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	—			RP35F	R<5:0>			—	_	RP20R<5:0>						0000
RPOR1	0682	_	—		RP37R<5:0>					—	_			RP36	R<5:0>			0000
RPOR2	0684	_	—		RP39R<5:0>					—	_			RP38	R<5:0>			0000
RPOR3	0686	_	_		RP41R<5:0>					_	_	RP40R<5:0>						0000
RPOR4	0688	_	_			RP43F	₹<5:0>			_	_			RP42I	R<5:0>			0000
RPOR5	068A	_	_			RP49F	₹<5:0>			_	_	RP48R<5:0>						0000
RPOR6	068C	_	_			RP55F	₹<5:0>			_	_	RP54R<5:0>						0000
RPOR7	068E	_	_		RP57R<5:0>					_	_	RP56R<5:0>					0000	
RPOR8	0690		_		RP70R<5:0>					—	_	RP69R<5:0>					0000	
RPOR9	0692	_	_		RP97R<5:0>					_	_	_	_		_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
bit 7		_	_				bit (
Legend:												
R = Readable		W = Writable			nented bit, read							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN					
bit 15	ROON: Refer	ence Oscillato	r Output Enat	ole bit								
				on the REFCL	.K pin ⁽²⁾							
	0 = Reference	e oscillator outp	out is disabled	t								
bit 14	Unimplemen	ted: Read as '	0'									
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit											
		e oscillator out e oscillator out		to run in Sleep d in Sleep								
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit								
		crystal is used lock is used as										
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾								
		ence clock divi										
		ence clock divi	•									
		ence clock divi ence clock divi	•									
		ence clock divi										
		ence clock divi										
		ence clock divi										
		ence clock divi										
		ence clock divi ence clock divi	-									
		ence clock divi	,									
		ence clock divi	•									
	0011 = Refer	ence clock divi	ded by 8									
		ence clock divi										
	0001 = Refer 0000 = Refer	ence clock divi	aed by 2									
bit 7-0			0'									
	ommplemen	ted: Read as '	U									

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER


- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-29). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

dsPIC33EPXXXGM3XX/6XX/7XX devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 26-1 in Section 26.0 "Op Amp/Comparator Module") and the PTG module (see Section 25.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXGM3XX/6XX/7XX devices support virtual connections to the filtered QEIx module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module").

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Virtual connection to the QEIx module allows peripherals to be connected to the QEIx digital filter input. To utilize this filter, the QEIx module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEIx digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43

RPINR15 = 0x2500; RPINR7 = 0x009;	/* Connect the QEI1 HOME1 input to RP37 (pin 43) */ /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000;	/* Enable the QEI digital filter */
QEI1CON = 0x8000;	/* Enable the QEI module */

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC6R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC5R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8		Assign Input Ca 11-2 for input pin			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0		Assign Input Ca 11-2 for input pin			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
		Input tied to Vss					

REGISTER 11-6: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

15.1 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB
bit 15							bit 8

R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	learable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-10	OCTSEL<2:0>: Output Compare x Clock Select bits
	 111 = Peripheral clock (FP) 110 = Reserved 101 = PTGOx clock⁽²⁾ 100 = T1CLK is the clock source of OCx (only the synchronous clock is supported) 011 = T5CLK is the clock source of OCx 010 = T4CLK is the clock source of OCx 001 = T3CLK is the clock source of OCx 000 = T2CLK is the clock source of OCx
bit 9	Unimplemented: Read as '0'
bit 8	ENFLTB: Fault B Input Enable bit
	 1 = Output Compare x Fault B input (OCFB) is enabled 0 = Output Compare x Fault B input (OCFB) is disabled
bit 7	ENFLTA: Fault A Input Enable bit
	 1 = Output Compare x Fault A input (OCFA) is enabled 0 = Output Compare x Fault A input (OCFA) is disabled
bit 6	Unimplemented: Read as '0'
bit 5	OCFLTB: PWM Fault B Condition Status bit
	 1 = PWM Fault B condition on OCFB pin has occurred 0 = No PWM Fault B condition on OCFB pin has occurred
bit 4	OCFLTA: PWM Fault A Condition Status bit
	 1 = PWM Fault A condition on OCFA pin has occurred 0 = No PWM Fault A condition on OCFA pin has occurred
Note 1:	OCxR and OCxRS are double-buffered in PWM mode only.
2:	Each Output Compare x module (OCx) has one PTG clock source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module " for more information. PTGO4 = OC1, OC5 PTGO5 = OC2, OC6 PTGO6 = OC3, OC7 PTGO7 = OC4, OC8

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode
		 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		<u>When Set to '⊥':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		<u>When Set to 'o':</u> If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened. If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWMx generator uses the secondary master time base for synchronization and as the clock source for the PWMx generation logic (if secondary time base is available) 0 = PWMx generator uses the primary master time base for synchronization and as the clock source for the PWMx generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
bit 1		0 = Edge-Aligned mode is enabled XPRES: External PWMx Reset Control bit ⁽⁵⁾
DILI		 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
bit 0		 0 = External pins do not affect the PWMx time base IUE: Immediate Update Enable bit⁽²⁾
DILU		 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
—		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0					
oit 15	•					•	bit 8					
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
—	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0					
bit 7							bit (
Legend: R = Readable	e hit	W = Writable	hit	U = Unimplen	nented hit rea	d as '0'						
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr						
	TOR				areu		IOWIT					
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13-8	FBP<5:0>: FIFO Buffer Pointer bits											
	011111 = RB31 buffer											
	011110 = RB30 buffer											
	•											
	•											
	000001 = TRB1 buffer 000000 = TRB0 buffer											
bit 7-6	Unimplemen	ted: Read as '	0'									
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poir	nter bits								
	011111 = RE	331 buffer										
	011110 = RB30 buffer											
	•											
	•											
	•											
	000001 = TRB1 buffer 000000 = TRB0 buffer											

REGISTER 21-5: CxFIFO: CANx FIFO STATUS REGISTER

REGISTER 21-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			FLTE	N<15:8>					
bit 15							bit 8		
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
			FLTE	N<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	pit	U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0		
bit 15	•	•	•		•		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0		
bit 7							bit 0		
Legend:									
				U = Unimplemented bit, read as '0'					
R = Readabl	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'			
R = Readabl -n = Value at		W = Writable '1' = Bit is set		U = Unimpler '0' = Bit is cle	,	l as '0' x = Bit is unkr	nown		
-n = Value at	POR	'1' = Bit is set	t	ʻ0' = Bit is cle	,		nown		
	F3BP<3:0>:	'1' = Bit is set RX Buffer Mas	t k for Filter 3 b	ʻ0' = Bit is cle	,		nown		
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		nown		
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		nown		
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		iown		
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	t k for Filter 3 b n RX FIFO bu	ʻ0' = Bit is cle its ffer	,		nown		
-n = Value at	F3BP<3:0>: 1111 = Filter 1110 = Filter 0001 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bu n RX Buffer 14 n RX Buffer 1	ʻ0' = Bit is cle its ffer	,		nown		
-n = Value at bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0	'0' = Bit is cle its ffer ↓	ared	x = Bit is unkr	nown		
-n = Value at	F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0	'0' = Bit is cle its ffer ↓	,	x = Bit is unkr	nown		
-n = Value at bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter 0001 = Filter 0000 = Filter F2BP<3:0>:	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in RX Buffer Mas	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0 k for Filter 2 b	'0' = Bit is cle its ffer its (same value	ared	x = Bit is unkr	nown		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-14	F7MSK<1:0>	F7MSK<1:0>: Mask Source for Filter 7 bit									
	11 = Reserved										
	10 = Acceptance Mask 2 registers contain mask										
		nce Mask 1 reg	•								
	•	nce Mask 0 reg									
bit 13-12 F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bits 15-14)											
bit 11-10											
bit 9-8 F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bits 15-14)											
bit 7-6	it 7-6 F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bits 15-14)										
bit 5-4	bit 5-4 F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bits 15-14)										

F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bits 15-14)

FOMSK<1:0>: Mask Source for Filter 0 bit (same values as bits 15-14)

REGISTER 21-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

bit 3-2

bit 1-0

REGISTER 25-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			PTGSDL	IM<15:8>								
bit 15	bit 15 bit 8											
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
			PTGSDL	_IM<7:0>								
bit 7							bit 0					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGSDLIM<15:0>:** PTG Step Delay Limit Register bits Holds a PTG step delay value, representing the number of additional PTG clocks, between the start of a Step command and the completion of a Step command.

- **Note 1:** A base step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).
 - 2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC0	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpler	nented bit, read	l as '0'	

bit 15-0 **PTGC0LIM<15:0>:** PTG Counter 0 Limit Register bits

'1' = Bit is set

May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the General Purpose Counter 0.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1	LIM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC'	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command, or as a limit register for the General Purpose Counter 1.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

'1' = Bit is set

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHO)LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHO	DLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register with the PTGCOPY command.

'0' = Bit is cleared

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

n = Value at POR

x = Bit is unknown

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0							
		_	_	CVRR1	VREFSEL	_								
bit 15			·				bi							
				5444.6		5444.6								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0							
bit 7							bit							
Legend:														
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'								
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown							
-														
bit 15-12	Unimplemen	ted: Read as '	0'											
bit 11	CVRR1: Com See bit 5.	nparator Voltage	e Reference I	Range Selectio	on bit									
bit 10	VREFSEL: V	oltage Referen	ce Select bit											
	VREFSEL: Voltage Reference Select bit 1 = CVREFIN = VREF+													
	0 = CVREFIN	is generated by	the resistor	network										
bit 9-8	Unimplemen	ted: Read as '	0'											
bit 7	CVREN: Comparator Voltage Reference Enable bit													
	 1 = Comparator voltage reference circuit is powered on 0 = Comparator voltage reference circuit is powered down 													
bit 6	CVROE: Comparator Voltage Reference Output Enable on CVREF10 Pin bit													
		evel is output or evel is disconne												
bit 11, 5	CVRR<1:0>: Comparator Voltage Reference Range Selection bits													
	11 = 0.00 CVRSRC to 0.94, with CVRSRC/16 step-size 10 = 0.33 CVRSRC to 0.96, with CVRSRC/24 step-size 01 = 0.00 CVRSRC to 0.67, with CVRSRC/24 step-size 0.25 CVRSRC to 0.75, with CVRSRC/24 step-size													
bit 4	00 = 0.25 CVRSRC to 0.75, with CVRSRC/32 step-size CVRSS: Comparator Voltage Reference Source Selection bit													
	1 = Compara	tor voltage refe	rence source	, CVRSRC = C\	/ref+ – Avss									
bit 3-0	0 = Comparator voltage reference source, CVRSRC = AVDD – AVSS CVR<3:0> Comparator Voltage Reference Value Selection $0 \le CVR<3:0> \le 15$ bits													
	$\frac{\text{When CVRR<1:0> = 11:}}{\text{CVREF} = (\text{CVR<3:0>/16)} \bullet (\text{CVRsRc})}$													
	When CVRR	, ,		(CV_{RSRC})										
	When CVRR		0.0.72											
			CVRSRC)											
	When CVRR	<1:0> = 00:		CVREF = (CVR<3:0>/24) • (CVRSRC) When CVRR<1:0> = 00:										
) • (CVRSRC) +												

REGISTER 26-7: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

Г

АС СНА	ARACTERIS	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TB10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N			ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N			ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from E Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

TABLE 33-23: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS . .

... ~

.

.

.

Note 1: These parameters are characterized, but are not tested in manufacturing.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions		
TC10	ТтхН	TxCK High Time	Synchronous	Tcy + 20	_	_	ns	Must also meet Parameter TC15		
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15		
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40	_	—	ns	N = Prescale value (1, 8, 64, 256)		
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

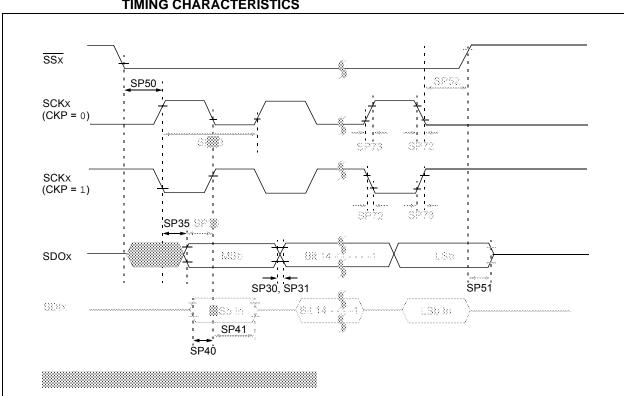
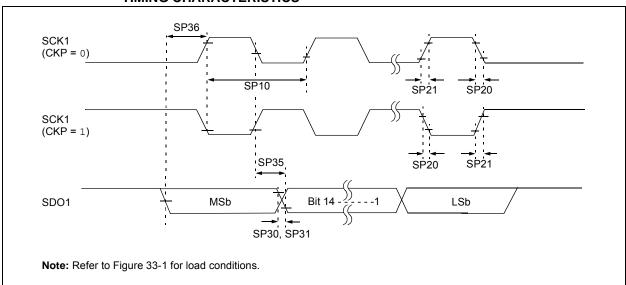



FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 33-24: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 33-41: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param. Symbol Characteristic ⁽¹⁾			Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	—		25	MHz	(Note 3)	
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—		_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

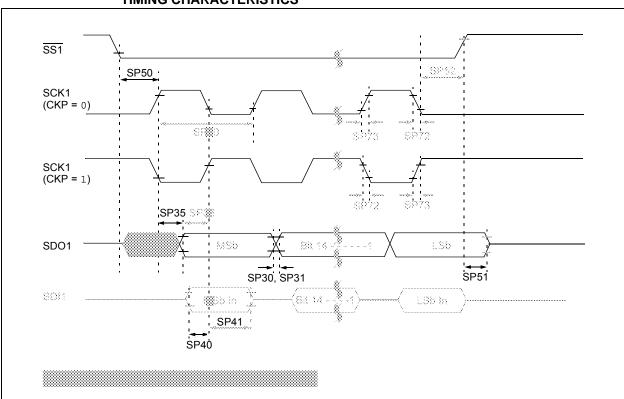


FIGURE 33-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

DC CHARAG	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Units	Conditions			
HDC40e	3.6	8	mA	+150°C 3.3V 10 MIPS			
HDC42e	5	15	mA	+150°C 3.3V 20 MIPS			
HDC44e	10	20	mA	+150°C	3.3V	40 MIPS	

TABLE 34-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

TABLE 34-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARAG	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Units	Conditions			
HDC20	11	25	mA	+150°C 3.3V 10 MIPS			
HDC22	15	30	mA	+150°C 3.3V 20 MIPS			
HDC23	21	50	mA	+150°C	3.3V	40 MIPS	

TABLE 34-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARAG	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Parameter No. Typical		Max	Doze Ratio	Units	Conditions		
HDC72a	25	45	1:2	mA	+150°C	3.3V	40 MIPS
HDC72g ⁽¹⁾	14	33	1:128	mA	+150 C	3.3V	40 IVIIP3

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.