

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	· ·
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm310-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	—	_	_	_	—	INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4	_	_	_	—	_	_	_	—	—	_	DAE	DOOVR	—	—	—	-	0000
INTCON4	08C6	—	_	_	—	_	_	_	—	—	_	_	—	—	—	—	SGHT	0000
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	_	PMPIF ⁽¹⁾	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	FLT1IF	RTCCIF ⁽²⁾		DCIIF	DCIEIF	QEI1IF	PSEMIF	_	_	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	_	CTMUIF	FLT4IF	QEI2IF	FLT3IF	PSESMIF	_	_	_	_	_	CRCIF	U2EIF	U1EIF	FLT2IF	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	_	_	_	U3TXIF	U3RXIF	U3EIF	-	0000
IFS6	080C	_	_	_	—	_	_	_	—	—	_	_	—	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_	-	_	_	_	-	_	_	_	_	_	_	0000
IFS9	0812	-		_	_	_	-	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	_	PMPIE ⁽¹⁾	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	—		SPI2IE	SPI2EIE	0000
IEC3	0826	FLT1IE	RTCCIE ⁽²⁾	-	DCIIE	DCIEIE	QEI1IE	PSEMIE		_	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	—	_	CTMUIE	FLT4IE	QEI2IE	FLT3IE	PSESMIE		—	_	_		CRCIE	U2EIE	U1EIE	FLT2IE	0000
IEC5	082A	PWM2IE	PWM1IE		-	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	_	_		U3TXIE	U3RXIE	U3EIE		0000
IEC6	082C	—	_		-	—	_			—	_	_		PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE		—	—	-	-	—	—	—	—	—	-	—	—	-	0000
IEC9	0832	—	—		—	—	-	-	—	—	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	-	0000
IPC0	0840	_	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	0842	_	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0	—	DMA0IP2	DMA0IP1	DMA0IP2	4444
IPC2	0844	_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	—	_	_	—	—	DMA1IP2	DMA1IP1	DMA1IP0	_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	4444
IPC4	0848	_	CNIP2	CNIP1	CNIP0	—	CMPIP2	CMPIP1	CMPIP0	—	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	—	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	_	AD2IP2	AD2IP1	AD2IP0	—	INT1IP2	INT1IP1	INT1IP0	4444
IPC6	084C	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	084E	—	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	—	_	_	—	_		_		_	SPI2IP2	SPI2IP1	SPI2IP0	—	SPI2EIP2	SPI2EIP1	SPI2EIP0	4444
IPC9	0852	—	IC5IP2	IC5IP1	IC5IP0	—	IC4IP2	IC4IP1	IC4IP0	—	IC3IP2	IC3IP1	IC3IP0	—	DMA3IP2	DMA3IP1	DMA3IP0	4444
IPC10	0854	—	OC7IP2	OC7IP1	OC7IP0	—	OC6IP2	OC6IP1	OC6IP0	—	OC5IP2	OC5IP1	OC5IP0	—	IC6IP2	IC6IP1	IC6IP0	4444

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

Note 1: The PMPIF/PMPIE/PMPIPx flags are not available on 44-pin devices.

2: The RTCCIF/RTCCIE/RTCCIPx flags are not available on 44-pin devices.

TABLE 4-45: DMA CONTROLLER REGISTER MAP

IADLE 4-	4J.							-						-		-		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW	—	_	—	—	_	AMODE1	AMODE0	—	—	MODE1	MODE0	0000
DMA0REQ	0B02	FORCE	_	_	_	_	_	_	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA0STAL	0B04								STA<1	5:0>								0000
DMA0STAH	0B06		_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	—	—	_	_	—	—	—	_				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E		_							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA1REQ	0B12	FORCE	_	_		_	_	_	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	00FF
DMA1STAL	0B14								STA<1	5:0>								0000
DMA1STAH	0B16	Ι	_	_	_	—	—	—	_				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A		_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA1PAD	0B1C								PAD<1	5:0>								0000
DMA1CNT	0B1E	_	_							CNT<1	3:0>							0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA2REQ	0B22	FORCE	_	_	_	_	_	—	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	00FF
DMA2STAL	0B24								STA<1	5:0>								0000
DMA2STAH	0B26		_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA2STBL	0B28								STB<1	5:0>								0000
DMA2STBH	0B2A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	—	—							CNT<1	3:0>							0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMODE1	AMODE0	_	_	MODE1	MODE0	0000
DMA3REQ	0B32	FORCE	_	-	_	-	_	-	_	IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0	OOFF
DMA3STAL	0B34								STA<1	5:0>								0000
DMA3STAH	0B36		_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA3STBL	0B38								STB<1	5:0>								0000
DMA3STBH	0B3A	_	_	_		_	_	_	_				STB<2	3:16>				0000
DMA3PAD	0B3C								PAD<1	5:0>								0000
DMA3CNT	0B3E	_	_							CNT<1	3:0>							0000
DMAPWC	0BF0	_	_	—	—	_	—	—	—	—	—	—	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	_	_	_		_	—	_	_	—		_	_	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	_	_	_	_	_	—	_	—	—	_	—	_	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	_	_	_	_	-	_	—	—	—	—	_		LSTCH	1<3:0>		000F
DSADRL	0BF8								DSADR<	15:0>				•				0000
DSADRH	0BFA	_	_	—		—	—	_	—				DSADR<	<23:16>				0000
Logond				Posot valuo														<u>.</u>

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-61: PORTG REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

	• • •		• • • • • • •															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60					TRISG<1	5:6>					-	—		TRISC	6<3:0>		03C0
PORTG	0E62					RG<15:	6>					_	_		RG<	3:0>		xxxx
LATG	0E64					LATG<15	5:6>					_	_		LATG	<3:0>		xxxx
ODCG	0E66					ODCG<1	5:6>					_	_		ODCO	G<3:0>		0000
CNENG	0E68					CNIEG<1	5:6>					—	_		CNIEC	G<3:0>		0000
CNPUG	0E6A					CNPUG<1	15:6>					—	_		CNPU	G<3:0>		0000
CNPDG	0E6C					CNPDG<1	15:6>					—	_		CNPD	G<3:0>		0000
ANSELG	0E6E	ANSG15		_	_			ANSG<	11:6>			_	_	ANSG	i<3:2>	_		0000
									and the second			•	•	•		•		•

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-62: PORTG REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	_	_	_	_			TRISC	6<9:6>				—	—		—	03C0
PORTG	0E62	_	_	_	_	_	_		RG<	9:6>		_	_	_	_	_	_	xxxx
LATG	0E64	—	—	_	_	—	_		LATG	<9:6>				—	—		—	xxxx
ODCG	0E66	_	_	_	_	_	_		ODCO	6<9:6>		_	_	_	_	_	_	0000
CNENG	0E68	_	_	_	_	_	_		CNIEC	G<9:6>		_	_	_	_	_	_	0000
CNPUG	0E6A	—	—	_	_	—	_		CNPU	G<9:6>				—	—		—	0000
CNPDG	0E6C	_	_	_	_	_	_		CNPD	G<9:6>		_	_	_	_	_	_	0000
ANSELG	0E6E	—	_	_	_	_	_		ANSO	6<9:6>		_	_	_	_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-63: PAD CONFIGURATION REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	0EFE	_	_		_		_	_	_	_		_	_	_	_	RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
OC5 – Output Compare 5	49	41	0x000066	IFS2<9>	IEC2<9>	IPC10<6:4>
OC6 – Output Compare 6	50	42	0x000068	IFS2<10>	IEC2<10>	IPC10<10:8>
OC7 – Output Compare 7	51	43	0x00006A	IFS2<11>	IEC2<11>	IPC10<14:12>
OC8 – Output Compare 8	52	44	0x00006C	IFS2<12>	IEC2<12>	IPC11<2:0>
PMP – Parallel Master Port ⁽²⁾	53	45	0x00006E	IFS2<13>	IEC2<13>	IPC11<6:4>
Reserved	54	46	0x000070	_	_	_
T6 – Timer6	55	47	0x000072	IFS2<15>	IEC2<15>	IPC11<14:12>
T7 – Timer7	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
T8 – Timer8	59	51	0x00007A	IFS3<3>	IEC3<3>	IPC12<14:12>
T9 – Timer9	60	52	0x00007C	IFS3<4>	IEC3<4>	IPC13<2:0>
INT3 – External Interrupt 3	61	53	0x00007E	IFS3<5>	IEC3<5>	IPC13<6:4>
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>
C2RX – CAN2 RX Data Ready ⁽¹⁾	63	55	0x000082	IFS3<7>	IEC3<7>	IPC13<14:12>
C2 – CAN2 Event ⁽¹⁾	64	56	0x000084	IFS3<8>	IEC3<8>	IPC14<2:0>
PSEM – PCPWM Primary Event	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
QEI1 – QEI1 Position Counter Compare	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
DCIE – DCI Fault Interrupt	67	59	0x00008A	IFS3<11>	IEC3<11>	IPC14<14:12>
DCI – DCI Transfer Done	68	60	0x00008C	IFS3<12>	IEC3<12>	IPC15<2:0>
Reserved	69	61	0x00008E	—	—	—
RTCC – Real-Time Clock and Calendar ⁽²⁾	70	62	0x000090	IFS3<14>	IEC3<14>	IPC15<10:8>
Reserved	71-72	63-64	0x000092-0x000094	—	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	—	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
C2TX – CAN2 TX Data Request ⁽¹⁾	79	71	0x0000A2	IFS4<7>	IEC4<7>	IPC17<14:12>
Reserved	80	72	0x0000A4	—	—	-
PSESM – PCPWM Secondary Event	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
Reserved	82	74	0x0000A8	—	—	-
QEI2 – QEI2 Position Counter Compare	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
Reserved	84	76	0x0000AC	—	—	-
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-88	78-80	0x0000B0-0x0000B4	—	—	-
U3E – UART3 Error Interrupt	89	81	0x0000B6	IFS5<1>	IEC5<1>	IPC20<6:4>
U3RX – UART3 Receiver	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
U3TX – UART3 Transmitter	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
Reserved	92-94	84-86	0x0000BC-0x0000C0			—
U4E – UART4 Error Interrupt	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12>
U4RX – UART4 Receiver	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>
U4TX – UART4 Transmitter	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

2: This interrupt source is not available on 44-pin devices.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To _complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Watchdog Timer and Power-Saving Modes" (DS70615), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

The dsPIC33EPXXXGM3XX/6XX/7XX devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGM3XX/6XX/7XX devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGM3XX/6XX/7XX devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the Assembler Include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

13.1 Timer Control Registers

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON AND T8CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	—	_	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32	_	TCS ⁽¹⁾	_
bit 7							bit 0
Legend:							
R = Readable b		W = Writable		•	nented bit, rea		
-n = Value at P0	DR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
		0.1.1					
	TON: Timerx						
	When T32 = 1 1 = Starts 32-						
	0 = Stops 32-						
	When T32 =						
	1 = Starts 16-						
bit 14	0 = Stops 16-	ted: Read as '	o'				
	-	x Stop in Idle M					
bit 15		ues module op		device enters l	dle mode		
		s module opera					
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time	erx Gated Time	Accumulation	Enable bit			
	When TCS =						
	This bit is igno						
	When TCS = 1 = Gated tim	<u><i>u.</i></u> le accumulatior	n is enabled				
		e accumulation					
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	01 = 1.0 00 = 1.1						
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit				
	1 = Timerx an	nd Timery form	a single 32-bi	t timer			
		nd Timery act a		ners			
		ted: Read as '					
		Clock Source S					
		clock is from pir	n, TxCK (on th	e rising edge)			
	0 = Internal cl						
bit 0		ted: Read as '	n'				

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = Capture timer is unsynchronized
 - 11110 = Capture timer is unsynchronized
 - 11101 = Capture timer is unsynchronized
 - 11100 = CTMU trigger is the source for the capture timer synchronization
 - 11011 = ADC1 interrupt is the source for the capture timer synchronization⁽⁵⁾
 - 11010 = Analog Comparator 3 is the source for the capture timer synchronization⁽⁵⁾
 - 11001 = Analog Comparator 2 is the source for the capture timer synchronization⁽⁵⁾
 - 11000 = Analog Comparator 1 is the source for the capture timer synchronization⁽⁵⁾
 - 10111 = Input Capture 8 interrupt is the source for the capture timer synchronization
 - 10110 = Input Capture 7 interrupt is the source for the capture timer synchronization 10101 = Input Capture 6 interrupt is the source for the capture timer synchronization
 - 10100 = Input Capture 5 interrupt is the source for the capture timer synchronization
 - 10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
 - 10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
 - 10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
 - 10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
 - 01111 = GP Timer5 is the source for the capture timer synchronization
 - 01110 = GP Timer4 is the source for the capture timer synchronization
 - 01101 = GP Timer3 is the source for the capture timer synchronization 01100 = GP Timer2 is the source for the capture timer synchronization
 - 01100 = GP Timer2 is the source for the capture timer synchronization 01011 = GP Timer1 is the source for the capture timer synchronization
 - 01011 = OF Time is the source for the capture time synchronization (6)
 - 01001 = Capture timer is unsynchronized
 - 01000 = Output Compare 8 is the source for the capture timer synchronization
 - 00111 = Output Compare 7 is the source for the capture timer synchronization
 - 00110 = Output Compare 6 is the source for the capture timer synchronization
 - 00101 = Output Compare 5 is the source for the capture timer synchronization
 - 00100 = Output Compare 4 is the source for the capture timer synchronization
 - 00011 = Output Compare 3 is the source for the capture timer synchronization
 - 00010 = Output Compare 2 is the source for the capture timer synchronization
 - 00001 = Output Compare 1 is the source for the capture timer synchronization
 - 00000 = Capture timer is unsynchronized
- **Note 1:** The IC32 bit in both the Odd and Even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x module (ICx) has one PTG input source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1, IC5
 PTGO9 = IC2, IC6
 PTGO10 = IC3, IC7
 PTGO11 = IC4, IC8

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = OCxRS compare event is used for synchronization 11110 = INT2 is the source for compare timer synchronization 11101 = INT1 is the source for compare timer synchronization 11100 = CTMU trigger is the source for compare timer synchronization 11011 = ADC1 interrupt is the source for compare timer synchronization 11010 = Analog Comparator 3 is the source for compare timer synchronization 11001 = Analog Comparator 2 is the source for compare timer synchronization 11000 = Analog Comparator 1 is the source for compare timer synchronization 10111 = Input Capture 8 interrupt is the source for compare timer synchronization 10110 = Input Capture 7 interrupt is the source for compare timer synchronization 10101 = Input Capture 6 interrupt is the source for compare timer synchronization 10100 = Input Capture 5 interrupt is the source for compare timer synchronization 10011 = Input Capture 4 interrupt is the source for compare timer synchronization 10010 = Input Capture 3 interrupt is the source for compare timer synchronization 10001 = Input Capture 2 interrupt is the source for compare timer synchronization 10000 = Input Capture 1 interrupt is the source for compare timer synchronization 01111 = GP Timer5 is the source for compare timer synchronization 01110 = GP Timer4 is the source for compare timer synchronization 01101 = GP Timer3 is the source for compare timer synchronization 01100 = GP Timer2 is the source for compare timer synchronization 01011 = GP Timer1 is the source for compare timer synchronization 01010 = PTGx trigger is the source for compare timer synchronization⁽³⁾ 01001 = Compare timer is unsynchronized 01000 = Output Compare 8 is the source for compare timer synchronization^(1,2) 00111 = Output Compare 7 is the source for compare timer synchronization^(1,2) 00110 = Output Compare 6 is the source for compare timer synchronization^(1,2) 00101 = Output Compare 5 is the source for compare timer synchronization^(1,2) 00100 = Output Compare 4 is the source for compare timer synchronization^(1,2) 00011 = Output Compare 3 is the source for compare timer synchronization^(1,2) 00010 = Output Compare 2 is the source for compare timer synchronization^(1,2) 00001 = Output Compare 1 is the source for compare timer synchronization^(1,2) 00000 = Compare timer is unsynchronized
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
 - 3: Each Output Compare x module (OCx) has one PTG Trigger/Sync source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO4 = OC1, OC5 PTGO5 = OC2, OC6 PTGO6 = OC3, OC7 PTGO7 = OC4, OC8

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC<1:0>: Dead-Time Control bits 11 = Dead-Time Compensation mode
		 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		<u>When Set to '⊥':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		<u>When Set to 'o':</u> If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened. If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWMx generator uses the secondary master time base for synchronization and as the clock source for the PWMx generation logic (if secondary time base is available) 0 = PWMx generator uses the primary master time base for synchronization and as the clock source for the PWMx generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
bit 1		0 = Edge-Aligned mode is enabled XPRES: External PWMx Reset Control bit ⁽⁵⁾
DILI		 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
bit 0		 0 = External pins do not affect the PWMx time base IUE: Immediate Update Enable bit⁽²⁾
DILU		 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices contains two Inter-Integrated Circuit (I^2C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface. The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I^2C module offers the following key features:

- I²C Interface Supporting both Master and Slave modes of Operation.
- I²C Slave mode Supports 7 and 10-Bit Addressing.
- I²C Master mode Supports 7 and 10-Bit Addressing.
- I²C Port Allows Bidirectional Transfers Between Master and Slaves.
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control).
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly.
- Intelligent Platform Management Interface (IPMI)
 Support
- System Management Bus (SMBus) Support

NOTES:

REGISTER 20-2:	UxSTA: UARTx STATUS AND CONTROL REGISTER	

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7					•		bit 0

Legend: C = Clearable bit		HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx Transmit Polarity Inversion bit

If IREN = 0:	
1 = UxTX Idle state is '0)'

0 = UxTX Idle state is '1'

- If IREN = 1:

 1 = IrDA encoded UxTX Idle state is '1'

 0 = IrDA encoded UxTX Idle state is '0'

 bit 12
 Unimplemented: Read as '0'

 bit 11
 UTXBRK: UARTx Transmit Break bit

 1 = Sends Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion

 0 = Sync Break transmission is disabled or has completed

 bit 10
 UTXEN: UARTx Transmit Enable bit⁽¹⁾

 1 = Transmit is enabled, UxTX pin is controlled by UARTx

 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is
 - controlled by the PORT
- bit 9 UTXBF: UARTx Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- Note 1: Refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) for information on enabling the UART module for transmit operation.

REGISTER 21-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

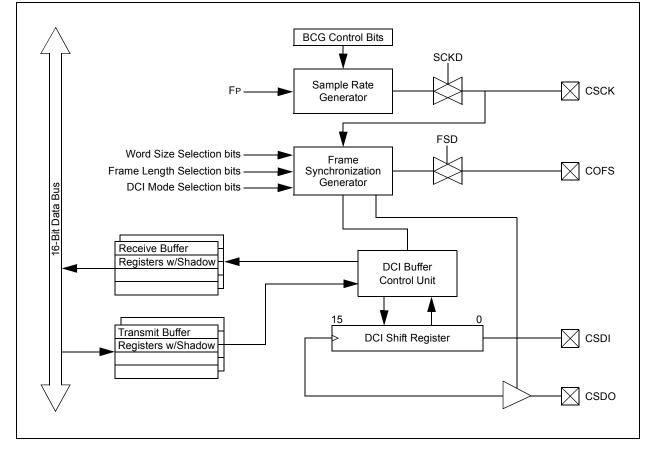
RW-0 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 TXENN TXABTN TXLARBN TXERN TXREQN RTRENN TXNPRI1 bit 15 Image: stress of the stresst of the stress of the stress of the stress o						
bit 15 R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 TXENm TXABTm ⁽¹⁾ TXLARBm ⁽¹⁾ TXERm ⁽¹⁾ TXERQm RTRENm TXmPRI1 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un bit 15-8 See Definition for bits 7-0, controls Buffer n bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error did not occur while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2<	R/W-0					
R/W-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 TXENm TXABTm ⁽¹⁾ TXLARBm ⁽¹⁾ TXERm ⁽¹⁾ TXREQm RTRENm TXmPRI1 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur bit 15-8 See Definition for bits 7-0, controls Buffer n bit 7 TXENm: TX/RX Buffer Selection bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TLLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message lost arbitration while being sent 0 = Message lost arbitration while being sent 1 = Message lost arbitration while the message was being sent 0 = A bus error ccurred while the message was being sent 1 = A bus error did not lose arbitration while being sent 0 = A bus error did not occur while the message was being sent 1 = A bus error did not occur while the message was being sent 0 = Clearing the bit to '0' while set requests a message abort	TXnPRI0					
TXENM TXABTm ⁽¹⁾ TXLARBm ⁽¹⁾ TXERRm ⁽¹⁾ TXREQm RTRENM TXmPRI1 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unit is unit is the set is	bit 8					
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un bit 15-8 See Definition for bits 7-0, controls Buffer n bit 7 TXENm: TX/RX Buffer Selection bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message idd not lose arbitration while being sent 0 = Message idd not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0	R/W-0					
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un bit 15-8 See Definition for bits 7-0, controls Buffer n bit 7 TXENm: TX/RX Buffer Selection bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent 0 = Clearing the bit to '0' while set requests a message abort bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit is received, TXREQx will be set 0 = When a remote transmit is recec	I TXmPRI0					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is units of the set is units of t	bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un bit 15-8 See Definition for bits 7-0, controls Buffer n bit 7 TXENm: TX/RX Buffer Selection bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI						
bit 15-8 See Definition for bits 7-0, controls Buffer n bit 7 TXENm : TX/RX Buffer Selection bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm : Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm : Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm : Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm : Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm : Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0> : Message Transmission Priority bits 11 = Highest message priority						
bit 7 TXEN :: TX/RX Buffer Selection bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABT :: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARB :: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message lost arbitration while being sent 0 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERR :: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQ :: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTREN :: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority 11	nknown					
bit 7 TXENm: TX/RX Buffer Selection bit 1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority <td></td>						
1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority 11 = Highest message priority						
 0 = Buffer, TRBn, is a receive buffer bit 6 TXABTm: Message Aborted bit⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = A bus error Detected During Transmission bit⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent 0 = A bus error did not occur while the message was being sent 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI 1 = Highest message priority 						
bit 6 TXABTm: Message Aborted bit ⁽¹⁾ 1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority						
1 = Message was aborted 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit ⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority 11 = Highest message priority						
 0 = Message completed transmission successfully bit 5 TXLARBm: Message Lost Arbitration bit⁽¹⁾ 1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = Message did not lose arbitration while being sent 0 = A bus error Detected During Transmission bit⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent 0 = A bus error did not occur while the message was being sent 0 = A bus error did not occur while the message was being sent 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI 1 = Highest message priority						
1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority						
1 = Message lost arbitration while being sent 0 = Message did not lose arbitration while being sent bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority						
bit 4 TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI 1 = Highest message priority						
1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority						
 0 = A bus error did not occur while the message was being sent TXREQm: Message Send Request bit Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI the set message priority 						
bit 3 TXREQm: Message Send Request bit 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority						
 1 = Requests that a message be sent; the bit automatically clears when the message is 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits Highest message priority 						
 0 = Clearing the bit to '0' while set requests a message abort bit 2 RTRENm: Auto-Remote Transmit Enable bit 1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority 						
1 = When a remote transmit is received, TXREQx will be set 0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority	successfully ser					
0 = When a remote transmit is received, TXREQx will be unaffected bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority						
bit 1-0 TXmPRI<1:0>: Message Transmission Priority bits 11 = Highest message priority						
11 = Highest message priority						
10 = High intermediate message priority						
01 = Low intermediate message priority 00 = Lowest message priority						
00 - Lowest message phoney						

Note 1: This bit is cleared when TXREQx is set.

Note: The buffers, SIDx, EIDx, DLCx, Data Field, and Receive Status registers, are located in DMA RAM.

24.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Data Converter Interface (DCI) Module" (DS70356), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


24.1 Module Introduction

The Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/ decoders (Codecs), ADC and D/A Converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- AC-Link Compliant mode

General features include:

- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

FIGURE 24-1: DCI MODULE BLOCK DIAGRAM

REGISTER 26-5: **CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)**

- bit 3 ABEN: AND Gate B Input Enable bit
 - 1 = MBI is connected to the AND gate
 - 0 = MBI is not connected to the AND gate
- bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to the AND gate
- 0 = Inverted MBI is not connected to the AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to the AND gate 0 = MAI is not connected to the AND gate bit 0
 - AANEN: AND Gate A Input Inverted Enable bit
 - 1 = Inverted MAI is connected to the AND gate
 - 0 = Inverted MAI is not connected to the AND gate

REGISTER 26-6:	CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—		—	—		_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0		
bit 7							bit C		
Legend:	1- 1-:4		L :4			(0)			
R = Readab		W = Writable		•	mented bit, read				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15-7	Unimplomor	nted: Read as '	0'						
	-			ak Calaat hita					
bit 6-4		: Comparator I	-inter input Cid	OCK Select Dits					
		$111 = T5CLK^{(1)}$							
	110 = T4CLk								
	101 = T3CL								
	100 = T2CL								
	011 = SYNC								
	010 = SYNC								
	$001 = Fosc^{(4)}$	•)							
bit 3	$000 = FP^{(4)}$	Comparator Filte	r Enabla bit						
DILS		•							
		1 = Digital filter is enabled 0 = Digital filter is disabled							
bit 2-0	C C		ilter Clock Div	vide Select bits					
		CFDIV<2:0>: Comparator Filter Clock Divide Select bits 111 = Clock Divide 1:128							
	111 = Clock Divide 1.126 110 = Clock Divide 1:64								
	110 = Clock Divide 1.04 $101 = Clock Divide 1.32$ $100 = Clock Divide 1.16$ $011 = Clock Divide 1.8$								
	010 = Clock								
	001 = Clock								
	000 = Clock								
	• •	e the Type C Timer Block Diagram (Figure 13-2).							
2: S	ee the Type B Ti	e the Type B Timer Block Diagram (Figure 13-1).							

- See the Type B Timer Block Diagram (Figure 13-1).
 - 3: See the PWMx Module Register Interconnect Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

27.3 RTCC Registers

REGISTER 27-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0		
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0		
bit 7							bit (
Legend:									
R = Readable		W = Writable		•	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
6:4 <i>4</i> 6		хо Бирьки(2)							
bit 15	RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled								
		odule is disable							
bit 14	Unimplemen	ted: Read as '	כ'						
bit 13	RTCWREN:	RTCC Value Re	egister Write E	Enable bit					
	1 = RTCVAL register can be written to by the user application								
		register is lock		0	, ,,	olication			
bit 12	RTCSYNC: RTCC Value Register Read Synchronization bit								
	 1 = A rollover is about to occur in 32 clock edges (approximately 1 ms) 0 = A rollover will not occur 								
bit 11	· · · · · · · · · · · · · · · · · · ·								
DIT II	HALFSEC: Half-Second Status bit ⁽³⁾ 1 = Second half period of a second								
		period of a sec							
bit 10	RTCOE: RTCC Output Enable bit								
	1 = RTCC output is enabled								
		utput is disabled							
bit 9-8	RTCPTR<1:0>: RTCC Value Register Pointer bits								
	Points to the corresponding RTCC Value register when reading the RTCVAL register; the RTCPTR<1:0> value decrements on every access of the RTCVAL register until it reaches '00'.								
bit 7-0		TCC Drift Calib	-	,					
	01111111 = Maximum positive adjustment; adds 508 RTCC clock pulses every one minute								
	•								
	•								
	 00000001 = Minimum positive adjustment; adds 4 RTCC clock pulses every one minute 								
	0000000 = No adjustment								
	11111111 = Minimum negative adjustment; subtracts 4 RTCC clock pulses every one minute								
	•								
	•								
	10000000 =	Maximum nega	ative adjustme	ent; subtracts 5	12 RTCC clock	pulses every c	one minute		
Note 1: The		gister is only af	facted by a D(28					

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

30.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGM3XX/6XX/7XX devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

30.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT time-out period (TwDT), as shown in Parameter SY12 in Table 33-21.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

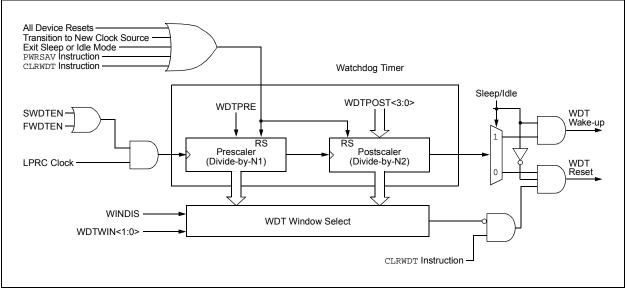
Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 30-2: WDT BLOCK DIAGRAM

30.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

30.5.3 ENABLING WDT


The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

30.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

© 2013-2014 Microchip Technology Inc.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Typ. ⁽²⁾	Max.	Units	Conditions		
Idle Current (III	dle) ⁽¹⁾			·		
DC40d	1.5	8.0	mA	-40°C		
DC40a	1.5	8.0	mA	+25°C	- 3.3V	10 MIPS
DC40b	1.5	8.0	mA	+85°C	3.3V	
DC40c	1.5	8.0	mA	+125°C		
DC41d	2.0	12.0	mA	-40°C		
DC41a	2.0	12.0	mA	+25°C	- 3.3V	20 MIPS
DC41b	2.0	12.0	mA	+85°C		
DC41c	2.0	12.0	mA	+125°C		
DC42d	5.5	15.0	mA	-40°C		40 MIPS
DC42a	5.5	15.0	mA	+25°C	2 2)/	
DC42b	5.5	15.0	mA	+85°C	3.3V	40 10117-3
DC42c	5.5	15.0	mA	+125°C		
DC43d	9.0	20.0	mA	-40°C		
DC43a	9.0	20.0	mA	+25°C	3.3V	60 MIPS
DC43b	9.0	20.0	mA	+85°C		
DC43c	9.0	20.0	mA	+125°C		
DC44d	10.0	25.0	mA	-40°C	3.3V	
DC44a	10.0	25.0	mA	+25°C		70 MIPS
DC44b	10.0	25.0	mA	+85°C		

TABLE 33-7:	DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
-------------	--

Note 1: Base Idle current (IIDLE) is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

This is the initial released version of this document.

Revision B (June 2013)

Changes to Section 5.0 "Flash Program Memory", Register 5-1. Changes to Section 6.0 "Resets", Figure 6-1. Changes to Section 26.0 "Op Amp/Comparator Module", Register 26-2. Updates to most of the tables in Section 33.0 "Electrical Characteristics". Minor text edits throughout the document.

Revision C (September 2013)

Changes to Figure 23-1. Changes to Figure 26-2. Changes to Table 30-2. Changes to Section 33.0 "Electrical Characteristics". Added Section 34.0 "High-Temperature Electrical Characteristics" to the data sheet. Minor typographical edits throughout the document.

Revision D (August 2014)

This revision incorporates the following updates:

- Sections:
 - Updated Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers", Section 8.0 "Direct Memory Access (DMA)", Section 10.3 "Doze Mode", Section 21.0 "Controller Area Network (CAN) Module (dsPIC33EPXXXGM6XX/7XX Devices Only)", Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)", Section 23.1.2 "12-Bit ADCx Configuration", Section 21.4 "CAN Message Buffers", Section 35.0 "Packaging Information"
- · Figures:
 - Updated **"Pin Diagrams"**, Figure 1-1, Figure 9-1
- · Registers:
 - Updated Register 5-1, Register 8-2, Register 21-1, Register 23-2
- · Tables:
 - Updated Table 1-1, Table 7-1, Table 8-1, Table 34-9, Table 1, Table 4-2, Table 4-3, Table 4-25, Table 4-33, Table 4-34, Table 4-39, Table 4-30, Table 4-46, Table 4-47, Table 33-16, Table 34-8