

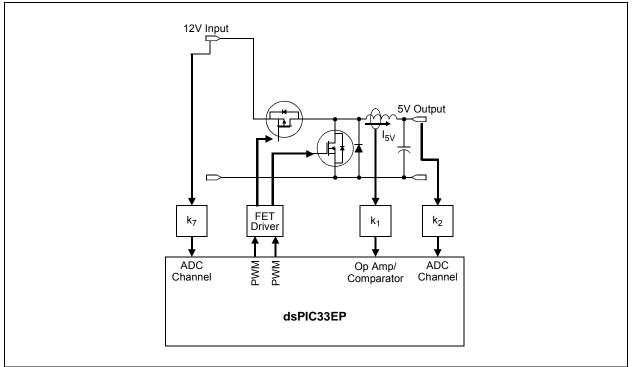
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

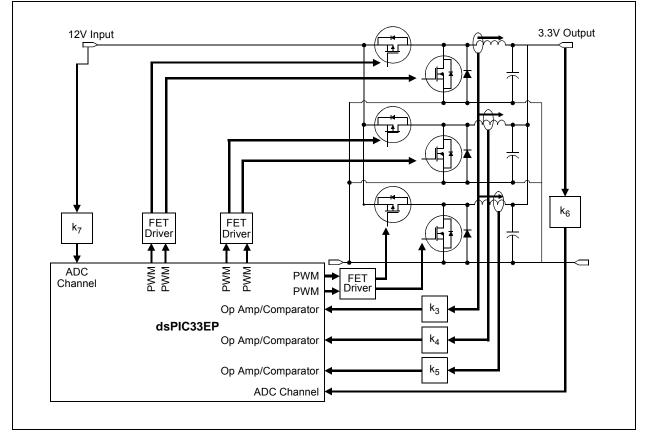
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm310-i-pf


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

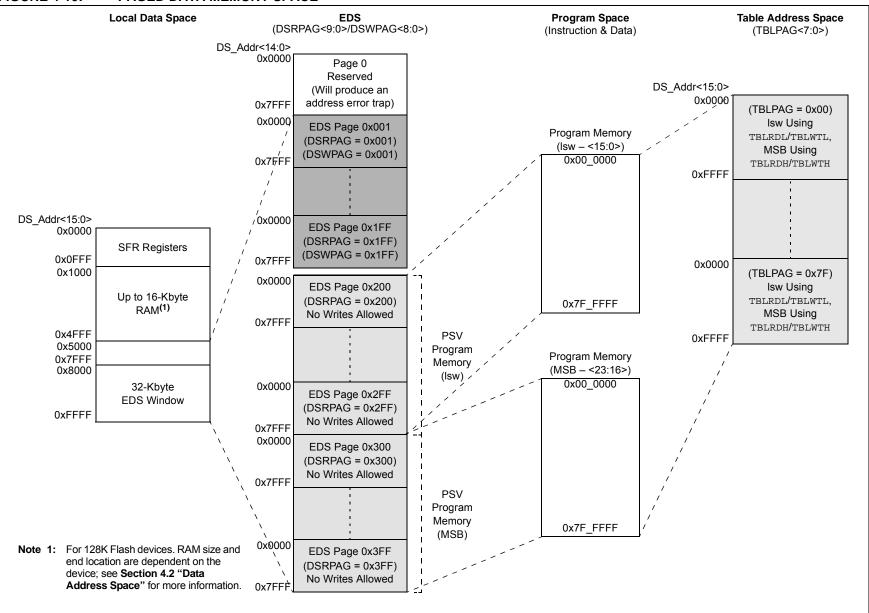
TABLE 4-17:	I2C1 AND I2C2 REGISTER MAP
--------------------	----------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	—	-	—	_	—	_	I2C1 Receive Register							0000	
I2C1TRN	0202	_	_	_	_	—	_	—	_				I2C1 Transr	nit Register				OOFF
I2C1BRG	0204							В	aud Rate C	Generator R	egister							0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ess Register					0000
I2C1MSK	020C	_	_	_	_	_	_				12	2C1 Address	Mask Regis	ster				0000
I2C2RCV	0210	_	_	_	_	_	_	_	-				I2C2 Receiv	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	-				I2C2 Transr	nit Register				OOFF
I2C2BRG	0214							В	aud Rate C	Generator R	egister							0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	—	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	—	_	I2C2 Address Register 0							0000			
I2C2MSK	021C		_	—	—	—	_	I2C2 Address Mask Register 0						0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_		—		—	—	—				UART1	Fransmit Re	gister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				UART1	Receive Re	gister				0000
U1BRG	0228							Ba	ud Rate C	Generator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Fransmit Re	gister				xxxx
U2RXREG	0236	_	_	_	_	—	_	—	UART2 Receive Register 0						0000			
U2BRG	0238							Ba	aud Rate Generator Prescaler 00						0000			


Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IADLL	TABLE 4-32. FERIFIERAL FIN SELECT OUTFUT REGISTER MAP FOR USPIC33EFAAAGMISTU//TU DEVICES																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_		RP35R<5:0>					—	_	RP20R<5:0>						0000
RPOR1	0682	_	_			RP37F	R<5:0>			—				RP36	R<5:0>			0000
RPOR2	0684	_	_			RP39F	R<5:0>			—				RP38	R<5:0>			0000
RPOR3	0686	_	_			RP41	R<5:0>			—				RP40	R<5:0>			0000
RPOR4	0688	_	_			RP43	R<5:0>			—				RP42	R<5:0>			0000
RPOR5	068A	_	_			RP49	R<5:0>			—		RP48R<5:0>						0000
RPOR6	068C	_	_			RP55F	R<5:0>			—		RP54R<5:0>						0000
RPOR7	068E	_	_			RP57F	R<5:0>			—				RP56	R<5:0>			0000
RPOR8	0690	_	_			RP70F	R<5:0>			—				RP69	R<5:0>			0000
RPOR9	0692	_	_			RP97F	R<5:0>			—				RP81	R<5:0>			0000
RPOR10	0694	_	_		RP118R<5:0> — — RP113R<5:0>						0000							
RPOR11	0696	_	_			RPR12	5R<5:0>			—		- RPR120R<5:0>					0000	
RPOR12	0698	_	—			RPR12	′R<5:0>			—		RPR126R<5:0>					0000	

TABLE 4-32: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGM3XX/6XX/7XX

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Interrupts" (DS70000600), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGM3XX/6XX/7XX CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- · Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGM3XX/6XX/7XX Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 151 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGM3XX/6XX/7XX devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- · CPU interrupt after half or full block transfer complete
- · Byte or word transfers
- Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM Start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	_	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	—
TMR3 – Timer3	00001000	—	—
TMR4 – Timer4	00011011	—	_
TMR5 – Timer5	00011100	—	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
SPI3 Transfer Done	01011011	0x02A8(SPI3BUF)	0x02A8(SPI3BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)
UART3RX – UART3 Receiver	01010010	0X0256(U3RXREG)	
UART3TX – UART3 Transmitter	01010011	_	0X0254(U3TXREG)
UART4RX – UART4 Receiver	01011000	0X02B6(U4RXREG)	
UART4TX – UART4 Transmitter	01011001		0X02B4(U4TXREG)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	_	_	_
bit 15	·						bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
—	—	—	_		LSTCH	<3:0>	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as 'o	o'				
bit 3-0	LSTCH<3:0>	: Last DMA Co	ntroller Chanr	nel Active Statu	is bits		
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sin	ice system Res	set		
	•						
	•						
	•						
	0010 = Last o 0001 = Last o	rved data transfer wa data transfer wa data transfer wa	as handled by as handled by	Channel 2 Channel 1			

0000 = Last data transfer was handled by Channel 0

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

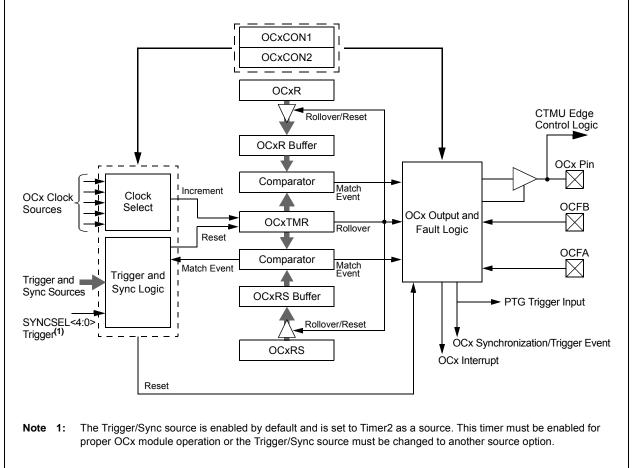
2: This is the default oscillator mode for an unprogrammed (erased) device.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<6:0>
PWM Dead-Time Compensation 4	DTCMP4	RPINR40	DTCMP4R<6:0>
PWM Dead-Time Compensation 5	DTCMP5	RPINR40	DTCMP5R<6:0>
PWM Dead-Time Compensation 6	DTCMP6	RPINR41	DTCMP6R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input is available on dsPIC33EPXXXGM6XX/7XX devices only.


15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24EFamily Reference Manual", "Output Compare" (DS70005157), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See the *"dsPIC33/PIC24 Family Reference Manual"*, **"Output Compare"** (DS70005157) for OCxR and OCxRS register restrictions.

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER (CONTINUED)

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_		PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Legend:		HS = Hardware		C = Clearable			
R = Readable		W = Writable b	bit		nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-14	Unimplome	ntad. Dood oo '	,				
bit 13	-	nted: Read as '(nnara Statua hi		
DIL IO		Position Counter IT ≥ QEIxGEC	er Greater i Na		npare Status DI	ι	
		IT < QEIXGEC					
bit 12	PCHEQIEN:	Position Counter	er Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt						
	0 = Interrupt				o		
bit 11		Position Counter $T \leq QEIxLEC$	er Less Than o	r Equal Compa	are Status bit		
		$T \ge QEIXLEC$					
bit 10	PCLEQIEN:	Position Counte	er Less Than o	r Equal Compa	re Interrupt En	able bit	
	1 = Interrupt						
	0 = Interrupt						
bit 9		Position Counter	er Overflow Sta	atus bit			
		has occurred	d				
bit 8		Position Counte		errupt Enable b	bit		
	1 = Interrupt			I			
	0 = Interrupt					<i></i>	
bit 7		sition Counter (H	÷.	ation Process	Complete Statu	us bit ⁽¹⁾	
		IT was reinitializ					
bit 6		IT was not reinit sition Counter (H		ation Process	Complete inter	runt Enable bit	
DILO	1 = Interrupt	-	oming) mitianz	auoniniocess			
	0 = Interrupt						
bit 5	VELOVIRQ:	Velocity Counter	r Overflow Sta	tus bit			
		has occurred					
		low has occurre			.,		
bit 4		Velocity Counte	r Overflow Inte	errupt Enable b	It		
	1 = Interrupt 0 = Interrupt						
bit 3	-	atus Flag for Ho	me Event Stat	us bit			
		ent has occurre					
	0 = No home	e event has occu	irred				

REGISTER 17-3: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾					
bit 15		•					bit					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾					
bit 7							bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown					
bit 15-13	Unimplemer	nted: Read as '	0'									
bit 12	DISSCK: Dis	able SCKx Pin	bit (SPI Maste	er modes only)								
		SPI clock is disa		tions as I/O								
		SPI clock is ena										
bit 11		able SDOx Pir										
		n is not used by n is controlled b		oin functions as	I/O							
bit 10	•	ord/Byte Comm	-	ect bit								
	1 = Communication is word-wide (16 bits)											
	0 = Commun	ication is byte-	wide (8 bits)									
bit 9	SMP: SPIx D	ata Input Sam	ole Phase bit									
	Master mode											
		a is sampled at a is sampled at		ta output time data output tim	e							
	Slave mode:	e cleared when	SPIx is used i	n Slave mode								
bit 8		lock Edge Sele		n olave mode.								
	1 = Serial ou	tput data chang	jes on transitio	on from active on from Idle clo	lock state to Id	le clock state (r /e clock state (r	efer to bit 6) efer to bit 6)					
bit 7		Select Enable				· ·	,					
		s used for Slav		,								
	$0 = \overline{SSx}$ pin i	s not used by t	ne module; pir	n is controlled b	y port function							
bit 6	CKP: Clock F	Polarity Select	oit									
				ve state is a low e state is a high								
bit 5	MSTEN: Mas	ster Mode Enat	ole bit									
	1 = Master m 0 = Slave mo											
				D								
Note 1: Th	IE CKE DILIS NOL	used in Frame	a SPI modes. I	Program this bit	to 10° for Frame	ea SPI moaes (FRMEN = 1					

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0		
bit 7							bit 0		
[
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-12		RX Buffer Masl							
		hits received in		-					
	1110 = Filter	hits received ir	NRX Buffer 14	4					
	•								
	•								
	0001 = Filter	hits received in	NRX Buffer 1						
	0000 = Filter	hits received in	n RX Buffer 0						
bit 11-8	F6BP<3:0>:	RX Buffer Masl	k for Filter 6 b	oits (same value	es as bits 15-12				
bit 7-4	4 F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits 15-12)								

REGISTER 21-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

REGISTER 21-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits 15-12)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| F11BP3 | F11BP2 | F11BP1 | F11BP0 | F10BP3 | F10BP2 | F10BP1 | F10BP0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0
bit 7							bit 0
Logond							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	F11BP<3:0>: RX Buffer Mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 •
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits 15-12)
bit 7-4	F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits 15-12)
bit 3-0	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)

© 2013-2014 Microchip Technology Inc.

bit 3-0

REGISTER 30-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R
			DEVID<	23:16> (1)			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID<	:15:8> (1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID	<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:	end: R = Read-Only bit U = Unimplemented bit						

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 30-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV				
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVREV	<15:8> ⁽¹⁾			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE				
bit 7							bit 0
Legend:	R = Read-only bit			U = Unimplen	nented bit		

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.

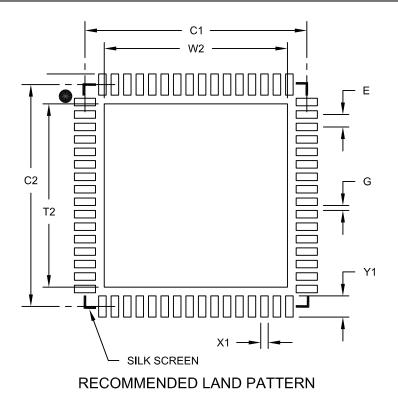

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
53	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
<u></u>	a. a	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
60	0.5	SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
69 70	SE	SE	Ws,Wnd	Wnd = sign-extended Ws f = 0xFFFF	1	1 1	C,N,Z
10	SETM	SETM	f		1	1	None
		SETM	WREG	WREG = 0xFFFF Ws = 0xFFFF	1	1	None None
71	SFTAC	SETM	Ws Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Contact Pitch E		0.50 BSC		
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Program Memo Product Group Pin Count Tape and Reel I Temperature Ra Package		Example: dsPIC33EP512GM710-I/PT: dsPIC33, Enhanced Performance, 512-Kbyte program memory, 100-pin, Industrial temperature, TQFP package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EP = Enhanced Performance	
Product Group:	GM7 = General Purpose plus Motor Control Family	
Pin Count:	04 = 44-pin 06 = 64-pin 10 = 100/124-pin	
Temperature Range:	$ \begin{array}{rcl} & = & -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ \text{E} & = & -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \end{array} $	
Package:	BG= Plastic Thin Profile Ball Grid Array - (121-pin) 10x10 mm body (TFBGA)ML= Plastic Quad, No Lead Package - (44-pin) 8x8 mm body (QFN)MR= Plastic Quad, No Lead Package - (64-pin) 9x9 mm body (QFN)PT= Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP)PT= Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP)PT= Thin Quad Flatpack - (100-pin) 12x12x1 mm body (TQFP)PF= Thin Quad Flatpack - (100-pin) 14x14x1 mm body (TQFP)	