

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm310t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **2:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

IABLE 4	4-0:	00	IPUIC			SIER W	AP											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	Itput Comp	are 1 Seco	ondary Regis	ter						xxxx
OC1R	0906								Output	Compare 7	1 Register							xxxx
OC1TMR	0908							Out	tput Comp	are 1 Time	r Value Regis	ster						xxxx
OC2CON1	090A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	-	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	Itput Comp	are 2 Seco	ondary Regis	ter						xxxx
OC2R	0910								Output	Compare 2	2 Register							xxxx
OC2TMR	0912						-	Ou	tput Comp	are 2 Time	r Value Regis	ster		-				xxxx
OC3CON1	0914	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT													000C		
OC3RS	0918		Output Compare 3 Secondary Register													xxxx		
OC3R	091A		Output Compare 3 Register													xxxx		
OC3TMR	091C						-	Ou	tput Comp	are 3 Time	r Value Regis	ster		-				xxxx
OC4CON1	091E	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Comp	are 4 Seco	ondary Regis	ter						xxxx
OC4R	0924								Output	Compare 4	4 Register							xxxx
OC4TMR	0926							Ou	tput Comp	are 4 Time	r Value Regis	ster						xxxx
OC5CON1	0928		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	092C							Ou	tput Comp	are 5 Seco	ondary Regis	ter						xxxx
OC5R	092E								Output	Compare &	5 Register							xxxx
OC5TMR	0930		Output Compare 5 Timer Value Register											xxxx				
OC6CON1	0932	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	0936	Output Compare 6 Secondary Register												xxxx				
OC6R	0938								Output	Compare 6	6 Register							xxxx
OC6TMR	093A							Out	tput Comp	are 6 Time	r Value Regis	ster						xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: UART3 AND UART4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	_	_	_	_	_	_	_				UART3 T	ransmit Reg	gister				xxxx
U3RXREG	0256	_	_	_	_	_	_	_	UART3 Receive Register									0000
U3BRG	0258															0000		
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	_	_	_	_	_	_	_				UART4 T	ransmit Reg	gister				xxxx
U4RXREG	02B6	186 — — — — — — — UART4 Receive Register												0000				
U4BRG	02B8	Baud Rate Generator Prescaler												0000				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: SPI1, SPI2 AND SPI3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	—	FRMDLY	SPIBEN	0000
SPI1BUF	0248		SPI1 Transmit and Receive Buffer Register													0000		
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	—	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tran	smit and Re	ceive Buffe	er Register							0000
SPI3STAT	02A0	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	02A2	_	—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	02A4	FRMEN	SPIFSD	FRMPOL	_	—	—	_	_	_	_	_	_	—	_	FRMDLY	SPIBEN	0000
SPI3BUF	02A8							SPI3 Tran	smit and Re	ceive Buffe	er Register							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾ (CONTINUED)

								,							-		-	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C1RXF11EID	046E								E	ID<15:0>								xxxx
C1RXF12SID	0470	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C1RXF12EID	0472		EID<15:0>											xxxx				
C1RXF13SID	0474	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF13EID	0476								E	ID<15:0>								xxxx
C1RXF14SID	0478	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	047A								E	ID<15:0>								xxxx
C1RXF15SID	047C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx
C1RXF15EID	047E								E	ID<15:0>								xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-26: CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

								,										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	_	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	_	CANCAP	-	—	WIN	0480
C2CTRL2	0502	—	_	_	_	_	_	_	_	_	_	_			DNCNT<4:0>			0000
C2VEC	0504	—	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0040
C2FCTRL	0506	DMABS2	DMABS1	DMABS0	_	_	_		-	_	_	_	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C2FIFO	0508	_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C2INTF	050A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_		-	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C2CFG1	0510	_	_	_	_	_	_		-	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C2CFG2	0512	_	WAKFIL	_	_	_	SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C2FEN1	0514								FLTE	N<15:0>								FFFF
C2FMSKSEL1	0518	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C2FMSKSEL2	051A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-27: CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							Se	e definition v	when WIN :	- x							
C2RXFUL1	0520								RXFUL	<15:0>								0000
C2RXFUL2	0522								RXFUL<	:31:16>								0000
C2RXOVF1	0528		RXOVF<15:0>											0000				
C2RXOVF2	052A		RXOVF<31:16>										0000					
C2TR01CON	0530	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C2TR23CON	0532	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C2TR45CON	0534	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C2TR67CON	0536	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	xxxx
C2RXD	0540	CAN2 Receive Data Word Register													xxxx			
C2TXD	0542		CAN2 Receive Data Word Register CAN2 Transmit Data Word Register												xxxx			

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	R/W-0	R/W-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾			RPDF	URERR ⁽⁶⁾
bit 15		•					bit
				R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
U-0	U-0	U-0	U-0				
	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}
bit 7							bit
Legend:		SO = Settab	le Only bit				
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ired	x = Bit is unkn	own
oit 15	WR: NVM Wr	te Control bit	(1)				
	1 = Initiates	a Flash mem	ory program o	r erase operati	on; the operati	on is self-timed	and the bit
		•		on is complete			
	-	-	-	ete and inactive			
pit 14	WREN: NVM						
			n/erase operati				
			erase operatio				
oit 13		•	ence Error Flag				
				ce attempt, or te	ermination has c	occurred (bit is s	et automatical
	•	et attempt of th	,	pleted normally			
bit 12			e Control bit ⁽²⁾	-			
JILIZ				ndby mode duri	aa Idla mada		
			is active durin		ly lule mode		
bit 11-10	Unimplemen			ig falo filodo			
oit 9	-			Data Format Co	ntrol bit		
5				pressed format			
				ompressed form			
bit 8				g Data Underru		(6)	
						een termination	due to a dat
	underrun			0 0 1			
	0 = Indicates	no data unde	errun error is de	etected			
bit 7-4	Unimplemen	ted: Read as	'0'				
Note 1:	These bits can o	nly be reset o	n POR.				
2:	If this bit is set, the				nd upon exiting	g Idle mode, the	re is a delay
	(TVREG) before F	-	-				
	All other combina			•			
4:	Execution of the	PWRSAV instru	uction is ignore	d while any of t	he NVM operat	tions are in prog	ress.
-							

- 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
- 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- · CPU interrupt after half or full block transfer complete
- · Byte or word transfers
- Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM Start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	_	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	—
TMR3 – Timer3	00001000	—	—
TMR4 – Timer4	00011011	—	_
TMR5 – Timer5	00011100	—	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
SPI3 Transfer Done	01011011	0x02A8(SPI3BUF)	0x02A8(SPI3BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)
UART3RX – UART3 Receiver	01010010	0X0256(U3RXREG)	
UART3TX – UART3 Transmitter	01010011	_	0X0254(U3TXREG)
UART4RX – UART4 Receiver	01011000	0X02B6(U4RXREG)	
UART4TX – UART4 Transmitter	01011001		0X02B4(U4TXREG)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

8.1 DMA Controller Registers

Each DMA Controller Channel x (where x = 0 through 3) contains the following registers:

- 16-bit DMA Channel x Control Register (DMAxCON)
- 16-bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-bit DMA Channel x Start Address Register A (DMAxSTAL/H)
- 32-bit DMA Channel x Start Address Register B (DMAxSTBL/H)
- 16-bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRL/H) are common to all DMA Controller channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMODE1	AMODE0	—	_	MODE1	MODE0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15	CHEN: Channel Enable bit
bit 15	1 = Channel is enabled
	0 = Channel is disabled
bit 14	SIZE: Data Transfer Size bit
DIL 14	1 = Byte
	0 = Word
bit 13	DIR: Transfer Direction bit (source/destination bus select)
DIC 15	1 = Reads from RAM address, writes to peripheral address
	0 = Reads from peripheral address, writes to RAM address
bit 12	HALF: Block Transfer Interrupt Select bit
DIL 12	· · · · · · · · · · · · · · · · · · ·
	 1 = Initiates interrupt when half of the data has been moved 0 = Initiates interrupt when all of the data has been moved
bit 11	NULLW: Null Data Peripheral Write Mode Select bit
	•
	 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) 0 = Normal operation
bit 10-6	Unimplemented: Read as '0'
	•
bit 5-4	AMODE<1:0>: DMA Channel Addressing Mode Select bits
	11 = Reserved 10 = Peripheral Indirect mode
	01 = Register Indirect without Post-Increment mode
	00 = Register Indirect with Post-Increment mode
bit 3-2	Unimplemented: Read as '0'
bit 1-0	MODE<1:0>: DMA Channel Operating Mode Select bits
bit 1-0	11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)
	10 = Continuous, Ping-Pong modes are enabled
	01 = One-Shot, Ping-Pong modes are disabled
	00 = Continuous, Ping-Pong modes are disabled

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 7		_	_				bit (
Legend:							
R = Readable		W = Writable			nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	ROON: Refer	ence Oscillato	r Output Enat	ole bit			
				on the REFCL	.K pin ⁽²⁾		
	0 = Reference	e oscillator outp	out is disabled	t			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	ROSSLP: Re	ference Oscilla	ator Run in Sle	eep bit			
		e oscillator out e oscillator out		to run in Sleep d in Sleep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
		crystal is used lock is used as					
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾			
		ence clock divi					
		ence clock divi	•				
		ence clock divi ence clock divi	•				
		ence clock divi					
		ence clock divi					
		ence clock divi					
		ence clock divi					
		ence clock divi ence clock divi	-				
		ence clock divi	,				
		ence clock divi	•				
	0011 = Refer	ence clock divi	ded by 8				
		ence clock divi					
	0001 = Refer 0000 = Refer	ence clock divi	aed by 2				
bit 7-0			0'				
	ommplemen	ted: Read as '	U				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	—	_	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	<u> </u>	—			_	FRMDLY	SPIBEN
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		med SPIx Suppo		_			
			•	cpin is used as	the Frame Sy	nc pulse input/or	utput)
1.11.4.4		SPIx support is o					
bit 14		x Frame Sync F		on Control bit			
		/nc pulse input (/nc pulse output					
bit 13	-	ame Sync Pulse	. ,				
		/nc pulse is activ	,				
		/nc pulse is activ	U U				
bit 12-2	Unimplemen	ted: Read as '0	,				
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Select	t bit			
		/nc pulse coinci					
	-	nc pulse preced					
bit 0		x Enhanced Bu		bit			
		d Buffer is enabl		d modo)			
		d Buffer is disab	ieu (Standan	u moue)			

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 21-8: CxEC: CANx TRANSMIT/RECEIVE ERROR COUNT REGISTER

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TERRCNT7 | TERRCNT6 | TERRCNT5 | TERRCNT4 | TERRCNT3 | TERRCNT2 | TERRCNT1 | TERRCNT0 |
| bit 15 | | | | | | | bit 8 |

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| RERRCNT7 | RERRCNT6 | RERRCNT5 | RERRCNT4 | RERRCNT3 | RERRCNT2 | RERRCNT1 | RERRCNT0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_		—	—	—	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ited: Read as '	0'				
bit 15-8 bit 7-6	-	i ted: Read as ' Synchronization		bits			
	SJW<1:0>: S 11 = Length i	Synchronization is 4 x TQ		bits			
	SJW<1:0>: S 11 = Length i 10 = Length i	Synchronization is 4 x TQ is 3 x TQ		bits			
	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ		bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i	Synchronization Is 4 x TQ Is 3 x TQ Is 2 x TQ Is 1 x TQ	i Jump Width	bits			
	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization Is 4 x TQ Is 3 x TQ Is 2 x TQ Is 1 x TQ	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	u Jump Width I	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: B 11 1111 = T	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ Baud Rate Pres	a Jump Width caler bits FCAN	bits			
bit 7-6	SJW<1:0>: S 11 = Length i 10 = Length i 01 = Length i 00 = Length i BRP<5:0>: E 11 1111 = T 00 0010 = T	Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ aud Rate Pres TQ = 2 x 64 x 1/2	a Jump Width caler bits FCAN	bits			

REGISTER 21-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

	(11) = 0	,2,4,0, 11 – 1,	5,5,7				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15							bit 8
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	See Definitior	n for bits 7-0, co	ontrols Buffer i	n			
bit 7		RX Buffer Sele					
		RBn, is a transn					
		RBn, is a receiv					
bit 6		essage Aborteo	bit ⁽¹⁾				
	1 = Message 0 = Message	was aborted completed trar	smission succ	cessfully			
bit 5	TXLARBm: N	Message Lost A	Arbitration bit ⁽¹)			
		lost arbitration					
	-	did not lose ar					
bit 4		ror Detected D	•				
		or occurred wh or did not occu					
bit 3	TXREQm: M	essage Send R	equest bit				
		that a message the bit to '0' wh			/ clears when the abort	e message is su	ccessfully ser
bit 2	RTRENm: Au	uto-Remote Tra	insmit Enable	bit			
	1 = When a r	emote transmit	is received, T	XREQx will be	e set		
	0 = When a r	emote transmit	is received, T	XREQx will be	e unaffected		
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	iority bits			
		message priori					
		ermediate mes					
		ermediate mess	• • •				
	00 = Lowest	message priori	ıy				
Note 1: Th	his bit is cleared	when TXREQx	is set.				

Note 1: This bit is cleared when TXREQx is set.

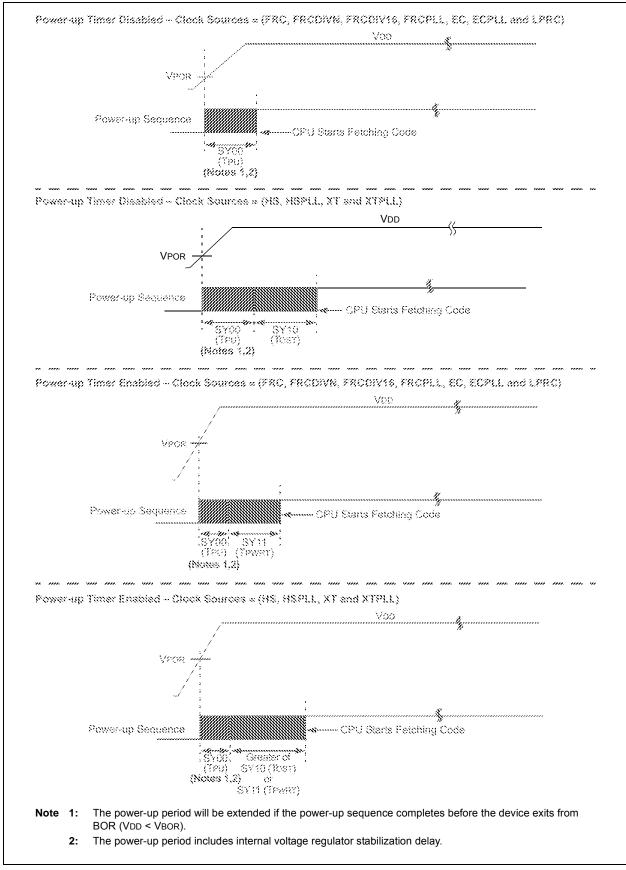
Note: The buffers, SIDx, EIDx, DLCx, Data Field, and Receive Status registers, are located in DMA RAM.

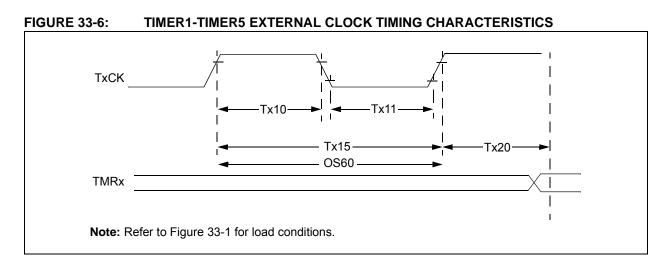
r-0	r-0	r-0	r-0	R-0	R-0	R-0	R-0
r	r	r	r	SLOT3	SLOT2	SLOT1	SLOT0
bit 15							bit
r-0	r-0	r-0	r-0	R-0	R-0	R-0	R-0
r	r	r	r	ROV	RFUL	TUNF	TMPTY
bit 7							bit
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkr	nown
	1111 = Slot 1 • • • • • • • • • • • • • • • • • • •	is currently ac is currently ac is currently ac	ctive ctive				
bit 7-4	Reserved: Re						
bit 3 bit 2	0 = A receive RFUL: Receiv 1 = New data	overflow has o overflow has r ve Buffer Full S is available in	occurred for a not occurred Status bit the Receive i	t least one Rec registers	eive register		
bit 1	0 = The Rece TUNF: Transr 1 = A transmit 0 = A transmit	nit Buffer Under t underflow ha	erflow Status s occurred for	r at least one Tr	ransmit register	r	
bit 0	TMPTY: Trans 1 = The Trans 0 = The Trans	smit Buffer Err smit registers a	ipty Status bit are empty	-			

REGISTER 24-4: DCISTAT: DCI STATUS REGISTER

25.3 Step Commands and Format

TABLE 25-1: PTG STEP COMMAND FORMAT


Step Comman	d Byte:			
		STEPx<7:0>		
	CMD<3:0>		OPTION<3:0>	
bit 7		bit 4 bit 3		bit 0


bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>
	001x	PTGSTRB	Copy the value contained in CMD0:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>)
	0100	PTGWHI	Wait for a low-to-high edge input from selected PTG trigger input as described by OPTION<3:0>
	0101	PTGWLO	Wait for a high-to-low edge input from selected PTG trigger input as described by OPTION<3:0>
	0110	Reserved	Reserved
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION<3:0>
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd0>:OPTION<3:0>></cmd0>
	101x	PTGJMP	Copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR)
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR)
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

FIGURE 33-5: POWER-ON RESET TIMING CHARACTERISTICS

TABLE 33-22: TIMER1 EXTER	AL CLOCK TIMING REQUIREMENTS ⁽¹⁾
---------------------------	---

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽²⁾		Min.	Тур.	Max.	Units	Conditions		
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)		
			Asynchronous	35		—	ns			
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	—	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)		
			Asynchronous	10		—	ns			
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	—	ns	N = Prescaler value (1, 8, 64, 256)		
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS (T1CON<1>) bit)		DC		50	kHz			
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40	—	1.75 Tcy + 40	ns			

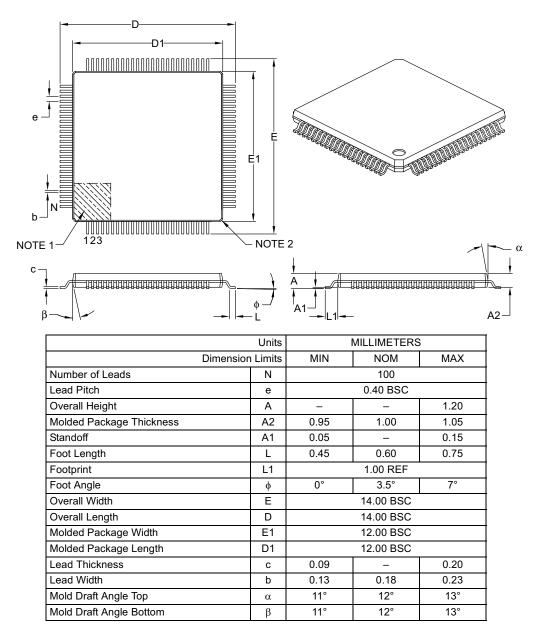
Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

АС СНА	ARACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol TLO:SCL	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	Max.	Units	Conditions		
IM10		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)		μs			
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS			
		-	400 kHz mode	Tcy/2 (BRG + 2)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS			
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from 10 to 400 pF		
			400 kHz mode	20 + 0.1 CB	300	ns			
			1 MHz mode ⁽²⁾	_	100	ns	-		
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns	CB is specified to be		
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		300	ns	-		
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns			
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽²⁾	40		ns			
IM26	THD:DAT	Data Input	100 kHz mode	0		μS			
		Hold Time	400 kHz mode	0	0.9	μS	-		
			1 MHz mode ⁽²⁾	0.2	_	μS			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	Only relevant for		
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	After this period, the first clock pulse is		
	_		400 kHz mode	Tcy/2 (BRG +2)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	generated		
IM33	Τςυ:ςτο	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS			
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode		3500	ns			
			400 kHz mode		1000	ns			
			1 MHz mode ⁽²⁾		400	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be		
			400 kHz mode	1.3		μ ο μS	free before a new		
			1 MHz mode ⁽²⁾	0.5		μ0 μS	transmission can sta		
IM50	Св	Bus Capacitive L			400	μ5 pF			
IM51	TPGD	Pulse Gobbler De		65	390	ns	(Note 3)		

TABLE 33-48: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to the "*dsPIC33/PIC24 Family Reference* Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195). Please see the Microchip web site for the latest "*dsPIC33E/PIC24E Family Reference Manual*" sections.


2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized, but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

NOTES: