

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

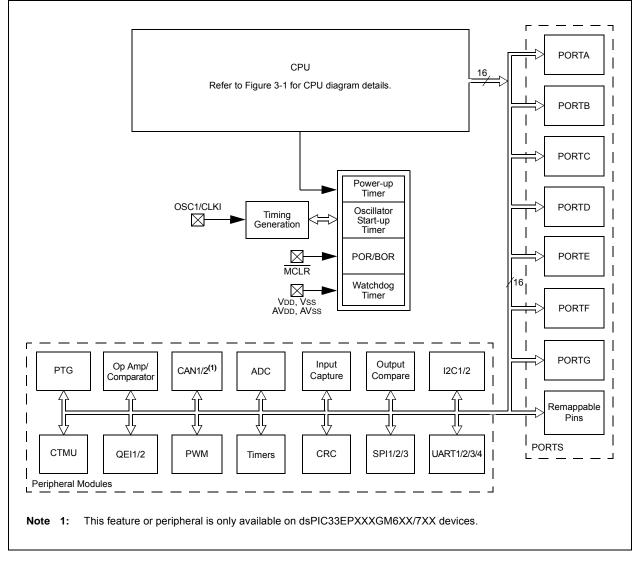
E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm604-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGM3XX/6XX/7XX Digital Signal Controller (DSC) devices.

dsPIC33EPXXXGM3XX/6XX/7XX devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGM3XX/6XX/7XX BLOCK DIAGRAM

2.5 ICSP Pins

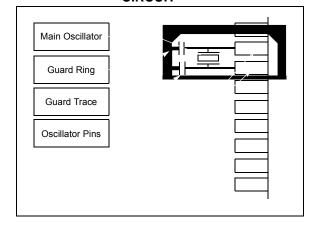
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGM3XX/ 6XX/7XX devices is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGM3XX/ 6XX/7XX devices contain control registers for Modulo

Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT	DO Loop Count register
DOSTARTH ⁽¹⁾ , DOSTARTL ⁽¹⁾	DO Loop Start Address register (High and Low)
DOENDH, DOENDL	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: The DOSTARTH and DOSTARTL registers are read-only.

TABLE 4-17:	I2C1 AND I2C2 REGISTER MAP
--------------------	----------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	—	-	—	_	—	_				I2C1 Receiv	ve Register				0000
I2C1TRN	0202	_	_	_	_	—	_	—	_				I2C1 Transr	nit Register				OOFF
I2C1BRG	0204							В	aud Rate C	Generator R	egister							0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN								1000		
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF								0000		
I2C1ADD	020A	_	_	_	_	_	_	I2C1 Address Register							0000			
I2C1MSK	020C	_	_	_	_	_	_				12	2C1 Address	Mask Regis	ster				0000
I2C2RCV	0210	_	_	_	_	_	_	_	-				I2C2 Receiv	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	-				I2C2 Transr	nit Register				OOFF
I2C2BRG	0214							В	aud Rate C	Generator R	egister							0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	—	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	—	_					I2C2 Addr	ess Register					0000
I2C2MSK	021C		_	—	—	—	_		I2C2 Address Mask Register							0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_		—		—	—	—				UART1	Fransmit Re	gister				xxxx
U1RXREG	0226	_	— — — — UART1 Receive Register 000										0000					
U1BRG	0228							Ba	ud Rate C	Generator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Fransmit Re	gister				xxxx
U2RXREG	0236	_	—	_	_	—	_	—				UART2	Receive Re	gister				0000
U2BRG	0238							Ba	ud Rate C	Generator Pre	scaler							0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

								- , , -										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	_	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	—	CANCAP	-	—	WIN	0480
C1CTRL2	0402	_		_	_	_	_	_	_	_	_	_			DNCNT<4:0>		-	0000
C1VEC	0404	_		_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0040
C1FCTRL	0406	DMABS2	DMABS1	DMABS0	—			—	—	—	—	_	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C1FIFO	0408	_		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	—	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C1INTF	040A	_		TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_		—	—			—	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C1CFG1	0410	_		—	—			—	—	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C1CFG2	0412	_	WAKFIL	—	—		SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C1FEN1	0414								FLTE	N<15:0>								FFFF
C1FMSKSEL1	0418	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C1FMSKSEL2	041A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-24: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							Se	e definition	when WIN :	×							
C1RXFUL1	0420								RXFUL	<15:0>								0000
C1RXFUL2	0422								RXFUL	<31:16>								0000
C1RXOVF1	0428		RXOVF<15:0> 000										0000					
C1RXOVF2	042A								RXOVF	<31:16>								0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	xxxx
C1RXD	0440							C	AN1 Receiv	e Data Wo	rd							xxxx
C1TXD	0442							C	AN1 Transn	nit Data Wo	rd							xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADR	U<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<23:16>:** Nonvolatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

'1' = Bit is set

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMAE)R<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

bit 15-0 **NVMADR<15:0>:** Nonvolatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit 8
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOST	1 PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit (
							
Legend:	la hit		L:4	II — Ilucius da un	antad bit was	L == (0'	
R = Readab		W = Writable		•	nented bit, read		
-n = Value a	IL POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWI
bit 15	ROI: Recover	on Interrupt b	it				
		will clear the D					
		will have no ef		OZEN bit			
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction	Select bits ⁽³⁾			
	111 = Fcy div						
	110 = Fcy div	•					
	101 = FCY div						
	100 = FCY div 011 = FCY div	/ided by 16 /ided by 8 (defa	ault)				
	010 = FCY div						
	001 = Fcy div						
	000 = FCY div	•					
bit 11		e Mode Enable					
				etween the perip		nd the processo	or clocks
hit 10 0		•	•	ratio are forced r Postscaler bits			
bit 10-8			RC Oscillator	Posiscaler bits	5		
	111 = FRC di 110 = FRC di						
	101 = FRC di	•					
	100 = FRC di						
	011 = FRC di						
	010 = FRC di 001 = FRC di	•					
		ivided by 1 (de	fault)				
bit 7-6		•		r Select bits (als	so denoted as	N2', PLL posts	caler)
	11 = Output o	livided by 8	-			-	·
	10 = Reserve						
	01 = Output c 00 = Output c	livided by 4 (de	efault)				
bit 5	-	ted: Read as '	0'				
	-			n interment a			
	This bit is cleared				uis.		
	This register resets The DOZE<2:0> b	-			hit is clear. If D		writes to
	OZE<2:0> b OZE<2:0> are ig	-			on is oreal. If D	∪∠∟iv – ⊥, ally	
							-

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0								
U-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0	—	—	—	_	—		_	—
Image: Section of the section of th	bit 15							bit 8
Image: Construction of the construc	11-0	11-0	11-0		P/M/ 0	11-0	11-0	11-0
- - DMA1MD ⁽¹⁾ DMA2MD ⁽¹⁾ DMA3MD ⁽¹⁾ PTGMD - - - egend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 module is disabled 0 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 0 = DMA3 module is disabled 0 = PTG module is enabled 0	0-0	0-0	0-0		10,00-0	0-0	0-0	0-0
Image: Constraint of the second se								
DMA3MD ⁽¹⁾ bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' on = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 14 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = PTG module is disabled 0 = PTG module is disabled 0 = PTG module is enabled bit 3 PTGMD: PTG Module Disable bit 1 = PTG module is enabled 0 = PTG module is enabled	—	-	—		PTGMD	—	—	—
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' bit 15-5 Unimplemented: Read as '0' bit 15-5 Unimplemented: Read as '0' bit 14 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = PTG module is disabled 0 = DTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0' <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is enabled 0 = DMA3 module is disabled 0 = DMA3 module is enabled bit 3 TGMD: PTG module is disabled </td <td>oit 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>bit C</td>	oit 7							bit C
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is enabled DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = PTG module is disabled 0 = PTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is enabled 0 = DMA3 module is disabled 0 = DTG module is disabled 0 = PTG module is disabled 0 = PTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0' Unimplemented: Read as '0'	-							
bit 15-5 Unimplemented: Read as '0' bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is enabled DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is enabled DMA3MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is enabled bit 3 PTGMD: PTG Module Disable bit 1 = PTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0'					•			
bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is enabled DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is enabled DMA3MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is disabled 0 = PTG module is disabled	-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is enabled DMA3MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is disabled 0 = DMA3 module is enabled bit 3 PTGMD: PTG Module Disable bit 1 = PTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0'	bit 4	1 = DMA0 mc 0 = DMA0 mc DMA1MD: DM 1 = DMA1 mc	odule is disable odule is enable MA1 Module D odule is disable	ed d isable bit ⁽¹⁾ ed				
 1 = DMA2 module is disabled 0 = DMA2 module is enabled DMA3MD: DMA3 Module Disable bit⁽¹⁾ 1 = DMA3 module is disabled 0 = DMA3 module is enabled 0 = DMA3 module Disable bit 1 = PTG Module Disable bit 1 = PTG module is disabled 0 = PTG module is enabled 0 = PTG module is enabled 								
1 = DMA3 module is disabled 0 = DMA3 module is enabled bit 3 PTGMD: PTG Module Disable bit 1 = PTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0'		1 = DMA2 mc	odule is disable	d				
bit 3 PTGMD: PTG Module Disable bit 1 = PTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0'		1 = DMA3 mc	odule is disable	d				
1 = PTG module is disabled 0 = PTG module is enabled bit 2-0 Unimplemented: Read as '0'								
bit 2-0 Unimplemented: Read as '0'	DIT 3	1 = PTG mod	ule is disabled	die dit				
-	oit 2-0			0'				
		-						

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT2R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	כ'				
bit 6-0		Assign Externa -2 for input pin			orresponding RI	Pn Pin bits	
	1111100 = In	put tied to RPI	124				
	•						
	•						
		put tied to CMI put tied to Vss					

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	111 = 1:128 prescale value 110 = 1:64 prescale value
	101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value
	010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	 1 = Counter direction is negative unless modified by external up/down signal 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or CCM<1:0> = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEAx and QEBx values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.
- 4: The match value applies to the A and B inputs after the swap and polarity bits have been applied.

REGISTER 17-8: INDXxCNTH: INDEX COUNTER x HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	IT<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INDXCNT<31:16>: High Word Used to Form 32-Bit Index Counter x Register (INDXxCNT) bits

REGISTER 17-9: INDXxCNTL: INDEX COUNTER x LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INDXCNT<15:0>: Low Word Used to Form 32-Bit Index Counter x Register (INDXxCNT) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMERx HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMERx LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTTM	IR<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTT	/IR<7:0>			
						bit 0
bit	W = Writable I	bit	U = Unimpler	nented bit, rea	d as '0'	
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0	INTTM R/W-0 R/W-0 R/W-0 INTTM Dit W = Writable bit	INTTMR<15:8> R/W-0 R/W-0 R/W-0 INTTMR<7:0> INTTMR<7:0>	INTTMR<15:8> R/W-0 R/W-0 R/W-0 INTTMR<7:0>	INTTMR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 INTTMR<7:0> Dit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- Note 1: Refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).
 - **3:** This feature is only available on 44-pin and 64-pin devices.
 - 4: This feature is only available on 64-pin devices.

REGISTER 21-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFUL	<15:8>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L<7:0>			
bit 7							bit 0
							,
Legend:		C = Writable	oit, but only '0'	can be written	to clear the bit		

Legend:	C = Writable bit, but only '0'	can be written to clear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<31:24>			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	_<23:16>			
bit 7							bit 0
Legend:		C = Writable b	it, but only '()' can be written	to clear the bi	it	
R = Readable	bit	W = Writable b	oit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0

RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

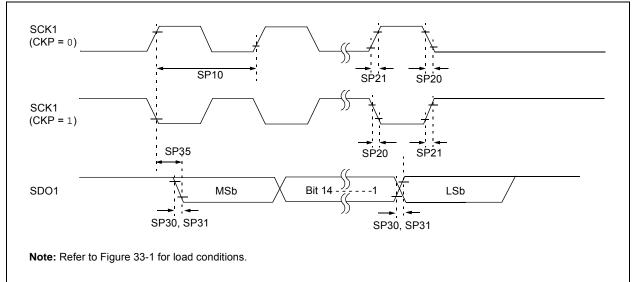
REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER⁽⁴⁾ (CONTINUED)

- bit 5-2 WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 TP

 0001 = Wait of additional 1 TP
 0000 = No additional Wait cycles (operation forced into one TP)

 bit 1-0 WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits^(1,2,3) 11 = Wait of 4 TP 10 = Wait of 3 TP 01 = Wait of 2 TP 00 = Wait of 1 TP
- Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See Section 4.1.8 "Wait States" in the "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33/PIC24 Family Reference Manual" for more information.
 - 2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
 - **3:** TP = 1/FP.
 - 4: This register is not available on 44-pin devices.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
17	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
18	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	Prefetch and store accumulator	1	1	None
19	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAI SA,SB,SAI
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OA SA,SB,SA
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OA SA,SB,SA
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None


TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)
--

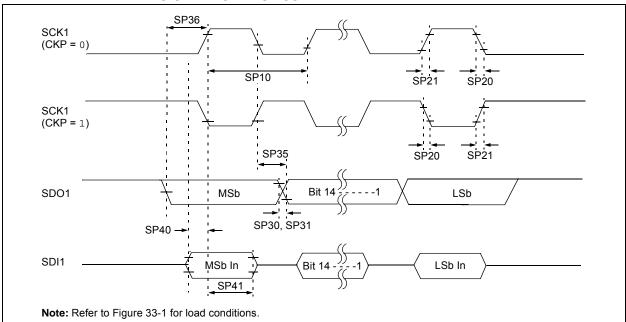

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 33-40: SPIT MAXIMUM DATA/CLOCK RATE SUMMARY	TABLE 33-40:	SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY
---	--------------	--------------------------------------

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 33-41		_	0,1	0,1	0,1	
25 MHz	—	Table 33-42	—	1	0,1	1	
25 MHz	—	Table 33-43	—	0	0,1	1	
25 MHz	—	—	Table 33-44	1	0	0	
25 MHz	—	—	Table 33-45	1	1	0	
25 MHz	_	_	Table 33-46	0	1	0	
25 MHz	_	_	Table 33-47	0	0	0	

FIGURE 33-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 33-25: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-42:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency		—	25	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	-	—	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	-	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	-	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	—	_	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

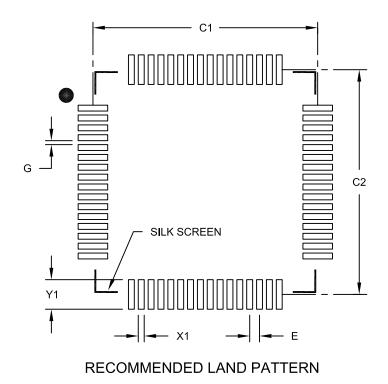
2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

TABLE 33-59:	ADCx CONVERSION (12-BIT MODE) TIMING REQUIREMENTS
--------------	-------------------	-------------	-----------------------

AC CHA	ARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽⁴⁾	Max.	Units	Conditions
		Clock	k Parame	ters			•
AD50	TAD	ADCx Clock Period	117.6	_		ns	
AD51	tRC	ADCx Internal RC Oscillator Period		250		ns	
		Conv	version R	ate			
AD55	tCONV	Conversion Time	_	14 Tad		ns	
AD56	FCNV	Throughput Rate	_	—	500	ksps	
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	3 Tad	—		_	
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	3 Tad	—		_	
		Timin	g Parame	ters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	—	3 Tad	—	Auto-convert trigger is not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	—	3 Tad	_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	_	0.5 TAD	—		
AD63	tdpu	Time to Stabilize Analog Stage from ADCx Off to ADCx On ⁽¹⁾	_	—	20	μS	(Note 3)

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.


2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

3: The parameter, tDPU, is the time required for the ADCx module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADCx result is indeterminate.

4: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETER	<u>د</u>		
Dimension Limits		MIN	NOM	MAX		
Contact Pitch	E	0.50 BSC				
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B