

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm604-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾ (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	BND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply

- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
 - 3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
—	—	—	—	ILR3	ILR2	ILR1	ILR0		
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0		
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-12	Unimplemen	ted: Read as '	0'						
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits					
	1111 = CPU	Interrupt Priorit	ty Level is 15						
	•								
	•								
		Interrupt Drierit	hulovolio 1						
	0001 = CPU	Interrupt Priori	ty Level is 0						
bit 7-0	VECNUM<7:	0>: Vector Nun	nber of Pendin	a Interrupt bits	3				
	111111111 =	255. Reserved	: do not use	.g					
	•	,	,						
	•								
	•								
	00001001 =	9, IC1 – Input (Capture 1						
	00001000 =	8, INTU – EXTE	rnal Interrupt (J					
	00000111 = 7, Reserved; do not use								
	00000110 =	5 DMA Contro	ller error trap						
	00000101 =	4 Math error tr	nei enoi ilap						
	0000011 =	3 Stack error t	ran						
	00000010 =	2. Generic har	d trap						
	00000001 =	1, Address erro	or trap						
	00000000 =	0, Oscillator fai	il trap						

		DAMA					
	T4MD	TSIVID	I ZIVID	TIMD	QEIIMD	PVVIVIIVID	
							DIL O
R/W-0	R/W-0	R/W-0	R/W-0	R/W/-0	R/W-0	R/W-0	R/W-0
12C1MD			SPI2MD	SPI1MD	C2MD ⁽¹⁾		
bit 7	OZIND			of Third	OLIND	0 mile	bit 0
							5100
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	T5MD: Timer	5 Module Disab	le bit				
	1 = Timer5 m	odule is disable	d				
	0 = Timer5 m	odule is enable	d				
bit 14	T4MD: Timer4	4 Module Disab	le bit				
	1 = Timer4 meters	odule is disable	ed a				
hit 10	0 = 1 mer4 mer4		u la hit				
DIL 13	1 - Timor3 m	odulo is disable					
	0 = Timer3 m	odule is disable	d				
bit 12	T2MD: Timer2	2 Module Disab	le bit				
	1 = Timer2 m	odule is disable	d				
	0 = Timer2 m	odule is enable	d				
bit 11	T1MD: Timer	1 Module Disab	le bit				
	1 = Timer1 m	odule is disable	d				
	0 = limer1 m	odule is enable	d				
bit 10		11 Module Disa	ble bit				
	1 = QEI1 mod 0 = QEI1 mod	lule is disabled					
bit 9	PWMMD: PW	/M Module Disa	able bit				
	1 = PWM mod	dule is disabled					
	0 = PWM mod	dule is enabled					
bit 8	DCIMD: DCI I	Module Disable	bit				
	1 = DCI modu	le is disabled					
bit 7		1 Module Disah	le hit				
bit i	$1 = 12C1 \mod 1$	ule is disabled					
	$0 = 12C1 \mod$	ule is enabled					
bit 6	U2MD: UART	2 Module Disal	ole bit				
	1 = UART2 m	odule is disable	ed				
	0 = UART2 m	odule is enable	ed				
bit 5	U1MD: UART	1 Module Disal	ole bit				
	1 = UART1 m	odule is disable	ed				
			iu iii				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: These bits are available on dsPIC33EPXXXGM6XX/7XX devices only.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK2R<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8	SCK2R<6:0 (see Table 1	 >: Assign SPI2 1-2 for input pin 	Clock Input (selection nur	SCK2) to the Co nbers)	orresponding I	RPn Pin bits	
	1111100 =	Input tied to RP	1124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	3				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	SDI2R<6:0>	Assign SPI2 E	Data Input (SE	012) to the Corre	esponding RP	n Pin bits	
	(see Table 1	1-2 for input pin	selection nur	nbers)			
	1111100 =	Input tied to RP	1124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	6				

REGISTER 11-16: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

REGISTER 11-40: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP118	3R<5:0>			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP113	3R<5:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	lown	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)							
bit 7-6	Unimplemen	ted: Read as '	0'					

bit 5-0 **RP113R<5:0>:** Peripheral Output Function is Assigned to RP113 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP125R<5:0>					
bit 15		_					bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—				RP120)R<5:0>				
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		

REGISTER 11-41: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP125R<5:0>:** Peripheral Output Function is Assigned to RP125 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

NOTES:

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2, 4, 6 AND 8)

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture" (DS70000352), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGM3XX/6XX/7XX devices support up to eight input capture channels.

Key features of the input capture module include:

- Hardware configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

FIGURE 14-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24EFamily Reference Manual", "Output Compare" (DS70005157), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See the *"dsPIC33/PIC24 Family Reference Manual"*, **"Output Compare"** (DS70005157) for OCxR and OCxRS register restrictions.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits

- 111 = Center-Aligned PWM mode: Output sets high when OCxTMR = OCxR and sets low when OCxTMR = OCxRS⁽¹⁾
- 110 = Edge-Aligned PWM mode: Output sets high when OCxTMR = 0 and sets low when OCxTMR = OCxR⁽¹⁾
- 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
- 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
- 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
- 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
- 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
- 000 = Output compare channel is disabled
- **Note 1:** OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1, OC5
 - PTGO5 = OC2, OC6
 - PTGO6 = OC3, OC7
 - PTGO7 = OC4, OC8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD	
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	IFLTMOD: Inc 1 = Independ 0 = Independ	dependent Fau dent Fault mode	It Mode Enabled	le bit				
bit 14-10	IFLTMOD: Independent Fault Mode Enable bit 1 = Independent Fault mode is enabled 0 = Independent Fault mode is disabled CLSRC<4:0>: Current-Limit Control Signal Source Select for the PWMx Generator # bits 11111 = Fault 32 11110 = Reserved • • • • • • • • • • • • •							
bit 9	CLPOL: Curr 1 = The selec 0 = The selec	ent-Limit Polari ted current-lim ted current-lim	ity for PWMx (it source is ac it source is ac	Generator # bit tive-low tive-high	₍ (1)			
bit 8	CLMOD: Cur 1 = Current-L 0 = Current-L	rent-Limit Mode imit mode is er imit mode is dis	e Enable for P nabled sabled	WMx Generat	or # bit			

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator # bits 11111 = Fault 32 (default) 11110 = Reserved • • • • • • • • • • • • •
	00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1
bit 2	FLTPOL: Fault Polarity for PWMx Generator # bit ⁽¹⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator # bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-23: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER x

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	_		LEB	<11:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LEB	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0	
bit 15					•		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	F7BP<3:0>:	RX Buffer Masl	c for Filter 7 b	its				
	1111 = Filter	hits received in	RX FIFO bu	ffer				
	1110 = Filter	hits received in	n RX Buffer 14	1				
	•							
	•							
	•	h : 4						
	0001 = Filter 0000 = Filter	hits received in hits received in	RX Buffer 0					
bit 11-8	F6BP<3:0>:	RX Buffer Masl	k for Filter 6 b	its (same value	es as bits 15-12))		
bit 7-4	F5BP<3:0>:	RX Buffer Masl	c for Filter 5 b	its (same value	es as bits 15-12))		

REGISTER 21-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

REGISTER 21-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits 15-12)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0
bit 7		•					bit 0
Lonondi							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	F11BP<3:0>: RX Buffer Mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 •
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits 15-12)
bit 7-4	F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits 15-12)
bit 3-0	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)

© 2013-2014 Microchip Technology Inc.

bit 3-0

REGISTER 21-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXOV	/F<15:8>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXO	VF<7:0>				
bit 7							bit 0	
Legend:		C = Writable I	bit, but only '	0' can be written	to clear the b	it		
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C_0	R/C-0	R/C_0	R/C-0	R/C-0	R/C_0	
100-0	100-0	100-0	100-0	100-0	100-0	100-0	100-0	
			RXOVI	=<31:24>				
bit 15							bit 8	
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	
			RXOVI	=<23:16>				
bit 7							bit 0	
Legend:		C = Writable b	oit, but only 'C)' can be written	to clear the b	it		
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Clock Source Select bits If SSRCG = 1: 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 2 primary trigger compare ends sampling and starts conversion 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion 001 = PWM Generator 1 primary trigger compare ends sampling and starts conversion 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTML Lends sampling and starts conversion
	101 = PWM secondary Special Event Trigger ends sampling and starts conversion
	100 = Timer5 compare ends sampling and starts conversion
	011 = PWM primary Special Event Trigger ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or $1x$)
	 In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0': 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x), or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADCx Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion; SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADCx Sample Enable bit
	 1 = ADCx Sample-and-Hold amplifiers are sampling 0 = ADCx Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADCx Conversion Status bit ⁽²⁾
	 1 = ADCx conversion cycle is completed. 0 = ADCx conversion has not started or is in progress Automatically set by hardware when A/D conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

2: Do not clear the DONE bit in software if ADCx Sample Auto-Start bit is enabled (ASAM = 1).

REGISTER 25-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented			mented bit, rea	id as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits

General purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGT1LIM<15:8>									
bit 15 bit 8									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGT1LIM<7:0>									
bit 7									

Legend:				
R = Readable bit	le bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General purpose Timer1 Limit register (effective only with a PTGT1 Step command).
- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

TABLE 33-36:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

			Standard Op	perating	Conditi	ons: 3.0	V to 3.6V			
		TICS	(unless othe	(unless otherwise stated)						
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
	1	1			-40°	$C \le TA \le$	+125°C for Extended			
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP70	FscP	Maximum SCKx Input Frequency	—	_	15	MHz	(Note 3)			
SP72	TscF	SCKx Input Fall Time	—	_		ns	See Parameter DO32 (Note 4)			
SP73	TscR	SCKx Input Rise Time	—	—	-	ns	See Parameter DO31 (Note 4)			
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)			
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 (Note 4)			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns				
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	—	ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)			
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	—	ns	(Note 4)			
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns				

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characte	eristic ⁽³⁾	Min.	Max.	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7		μS			
			400 kHz mode	1.3		μS			
			1 MHz mode ⁽¹⁾	0.5	—	μS			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5		μS			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	300	ns			
IS25	TSU:DAT	T Data Input	100 kHz mode	250		ns			
	Setup Time	400 kHz mode	100		ns				
			1 MHz mode ⁽¹⁾	100	—	ns			
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μS			
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μS			
IS30	TSU:STA	TSU:STA	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μS	Start condition		
			1 MHz mode ⁽¹⁾	0.25		μS			
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first		
		Hold Time	400 kHz mode	0.6		μS	CIOCK PUISE IS Generated		
			1 MHz mode ⁽¹⁾	0.25		μS			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS			
		Setup Time	400 kHz mode	0.6	—	μS			
			1 MHz mode ⁽¹⁾	0.6	—	μS			
IS34	THD:STO	Stop Condition	100 kHz mode	4		μS	-		
		Hold Time	400 kHz mode	0.6		μS	-		
			1 MHz mode(")	0.25		μS			
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	-		
		FIOTI CIOCK	400 kHz mode	0	1000	ns			
10.15	-		1 MHz mode()	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free		
			400 kHz mode	1.3		μS	can start		
			1 MHz mode ⁽¹⁾	0.5	—	μS			
IS50	Св	Bus Capacitive Lo	bading	—	400	pF			
IS51	TPGD	Pulse Gobbler De	lay	65	390	ns	(Note 2)		

TABLE 33-49: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: The Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-38: ADC1 CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)