

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I2S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm604-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE 4	4-0:	00	IPUIC			SIER W	AP											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904		Output Compare 1 Secondary Register													xxxx		
OC1R	0906		Output Compare 1 Register												xxxx			
OC1TMR	0908		Output Compare 1 Timer Value Register x											xxxx				
OC2CON1	090A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	-	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	Itput Comp	oare 2 Seco	ondary Regis	ter						xxxx
OC2R	0910								Output	Compare 2	2 Register							xxxx
OC2TMR	0912						-	Ou	tput Comp	are 2 Time	r Value Regis	ster		-				xxxx
OC3CON1	0914	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Comp	are 3 Seco	ondary Regis	ter						xxxx
OC3R	091A								Output	Compare 3	3 Register							xxxx
OC3TMR	091C						-	Ou	tput Comp	are 3 Time	r Value Regis	ster		-				xxxx
OC4CON1	091E	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Comp	oare 4 Seco	ondary Regis	ter						xxxx
OC4R	0924								Output	Compare 4	4 Register							xxxx
OC4TMR	0926							Ou	tput Comp	are 4 Time	r Value Regis	ster						xxxx
OC5CON1	0928		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	092C							Ou	tput Comp	are 5 Seco	ondary Regis	ter						xxxx
OC5R	092E								Output	Compare &	5 Register							xxxx
OC5TMR	0930							Ou	tput Comp	are 5 Time	r Value Regis	ster						xxxx
OC6CON1	0932	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	0934	FLTMD	FLTMD FLTOUT FLTTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 00										000C					
OC6RS	0936	Output Compare 6 Secondary Register x											xxxx					
OC6R	0938		Output Compare 6 Register xx											xxxx				
OC6TMR	093A							Out	tput Comp	are 6 Time	r Value Regis	ster						xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: NVM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL		—	RPDF	URERR	-	-		_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A								NVMAD	R<15:0>								0000
NVMADRU	072C	_	_	_	_	_	_	_	_				NVMAD	RU<23:16>				0000
NVMKEY	072E	_	_	_	_	_	_	_	_				NVM	(EY<7:0>				0000
NVMSRCADRL	0730							NVMS	SRCADR<	15:1>							0	0000
NVMSRCADRH	0732												NVMSRCA	ADRH<23:1	6>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		—	VREGSF		СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0030
PLLFBD	0746	_	_	_	—			—				PL	LDIV<8:0>					0030
OSCTUN	0748	_	_		_			_						TUN	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the configuration fuses.

TABLE 4-37: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms; it is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XB value is scaled accordingly to
	generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo	Addressing	and	Bit-Rev	ersed							
	Addressi	ing can be er	abled s	simultane	ously							
	using the same W register, but Bit-Reversed											
	Addressi	ing operatio	n will	always	take							
	preceder	nce for data w	rites w	hen enab	led.							

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

4.7 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGM3XX/6XX/7XX architecture uses a 24-bit-wide Program Space and a 16-bit-wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGM3XX/6XX/7XX devices provides two methods by which Program Space can be accessed during operation:

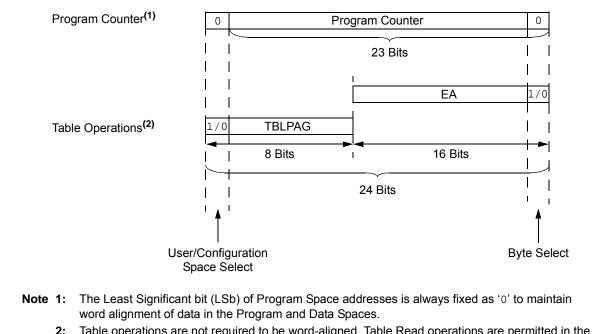

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-68: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address									
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>					
Instruction Access	User	0		PC<22:1>		0					
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0									
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>						
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxx	x xxxx xxxx						
	Configuration	TB	LPAG<7:0>		Data EA<15:0>						
		1	xxx xxxx	xxxx xx	xx xxxx xxxx						

FIGURE 4-16: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS70602), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

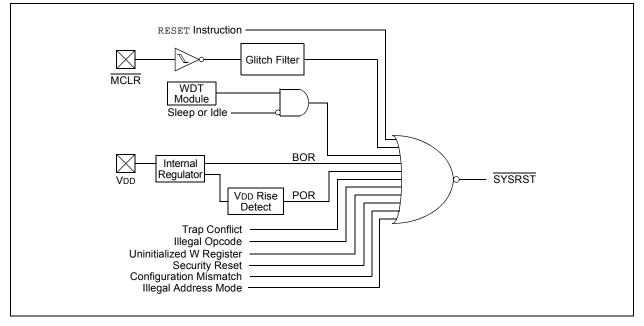
- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Illegal Address Mode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).


A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 7-1: dsPIC33EPXXXGM3XX/6XX/7XX INTERRUPT VECTOR TABLE

▲	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
£	Oscillator Fail Trap Vector	0x000004	
rior	Address Error Trap Vector	0x000006	
ር አ	Generic Hard Trap Vector	0x000008	
Orde	Stack Error Trap Vector	0x00000A	
ផ្ទ	Math Error Trap Vector	0x00000C	
atur	DMA Controller Error Trap Vector	0x00000E	
ž b	Generic Soft Trap Vector	0x000010	
Decreasing Natural Order Priority	Reserved	0x000012	
crea	Interrupt Vector 0	0x000014	
Dec	Interrupt Vector 1	0x000016	
	:	:	
,	:	:	
ĭ	:	:	
2	Interrupt Vector 52	0x00007C	
	Interrupt Vector 53	0x00007E	
	Interrupt Vector 54	0x000080	\backslash
	:	:	See Table 7-1 for
	:	:	Interrupt Vector Details
	:	:	
	Interrupt Vector 116	0x0000FC	
	Interrupt Vector 117	0x0000FE	
	Interrupt Vector 118	0x000100	
	Interrupt Vector 119	0x000102	
	Interrupt Vector 120	0x000104	
	:	:	
	:	:	
	:	:	
V	Interrupt Vector 244	0x0001FC	
	Interrupt Vector 245	0x0001FE	/
	START OF CODE	0x000200	

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—		—	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit (
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

bit 15-4	Unimplemented: Read as '0'
bit 3	PWCOL3: Channel 3 Peripheral Write Collision Flag bit
	1 = Write collision is detected0 = No write collision is detected
bit 2	PWCOL2: Channel 2 Peripheral Write Collision Flag bit
	1 = Write collision is detected
	0 = No write collision is detected
bit 1	PWCOL1: Channel 1 Peripheral Write Collision Flag bit
	1 = Write collision is detected
	0 = No write collision is detected
bit 0	PWCOL0: Channel 0 Peripheral Write Collision Flag bit
	1 = Write collision is detected
	0 = No write collision is detected

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL	_	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS1	TCKPS1		TSYNC ⁽¹⁾	TCS ⁽¹⁾	—
bit 7							bit 0
r							
Legend:							
R = Readable		W = Writable		-	mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
	TON: Timer1	o					
bit 15	1 = Starts 16-						
	1 = Starts 16- 0 = Stops 16-						
bit 14	•	ted: Read as ')'				
bit 13	-	1 Stop in Idle N					
	1 = Discontine	ues module op	eration when	device enters I	dle mode		
		s module opera		ode			
bit 12-7	-	ted: Read as '					
bit 6		er1 Gated Time	Accumulation	Enable bit			
	When TCS = This bit is igno						
	When TCS =						
		e accumulatior	n is enabled				
	0 = Gated tim	e accumulatior	n is disabled				
bit 5-4		: Timer1 Input	Clock Prescal	e Select bits			
	11 = 1:256 10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as ')'				
bit 2		er1 External Clo	ock Input Synd	chronization Se	elect bit ⁽¹⁾		
	When TCS = $\frac{1}{1}$		a al ciana ut				
		izes external cl synchronize ex		nout			
	When TCS =	•		iput			
	This bit is igno						
bit 1	TCS: Timer1	Clock Source S	Select bit ⁽¹⁾				
		clock is from pir	n, T1CK (on th	ne rising edge)			
hit 0	0 = Internal cl		۰ ۲				
bit 0	ommplemen	ted: Read as '	J				
	en Timer1 is en mpts by user s				ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0				
bit 15			1	1			bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0				
bit 7							bit (
Legend:											
R = Readable bit		W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15		larm Enable bit									
	1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x00 and CHIME = 0)										
	0 = Alarm is	,									
bit 14	CHIME: Chime Enable bit										
	1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF										
	0 = Chime is	s disabled; ARP	T<7:0> bits st	op once they re	each 0x00						
bit 13-10	AMASK<3:0>: Alarm Mask Configuration bits										
	0000 = Every half second										
	0001 = Every second 0010 = Every 10 seconds										
	0011 = Every minute										
		y 10 minutes									
	0101 = Ever										
	0110 = Once a day 0111 = Once a week										
	1000 = Once a month										
	1001 = Once a year (except when configured for February 29th, once every 4 years)										
		e a year (except		ired for Februa	ry 29th, once e	every 4 years)					
	101x = Rese	e a year (except erved – do not u	se	ired for Februa	ry 29th, once e	every 4 years)					
hit 9-8	101x = Rese 11xx = Rese	e a year (except erved – do not u erved – do not u	ise			every 4 years)					
bit 9-8	101x = Rese 11xx = Rese ALRMPTR<	e a year (except erved – do not u erved – do not u 1:0>: Alarm Val	ise ise ue Register W	indow Pointer	bits		The				
bit 9-8	101x = Rese 11xx = Rese ALRMPTR< Points to the	e a year (except erved – do not u erved – do not u	ise lise ue Register W Alarm Value re	indow Pointer l egisters when r	bits eading the AL	RMVAL register					
	101x = Rese 11xx = Rese ALRMPTR< Points to the ALRMPTR<	e a year (except erved – do not u erved – do not u fros: Alarm Val corresponding	ise ise ue Register W Alarm Value re ements on eve	indow Pointer egisters when r ery read or write	bits eading the AL	RMVAL register					
	101x = Rese 11xx = Rese ALRMPTR< Points to the ALRMPTR< ARPT<7:0>:	e a year (except erved – do not u erved – do not u 1:0>: Alarm Val corresponding 1:0> value decre	ise ue Register W Alarm Value re ements on eve Counter Value	indow Pointer egisters when r ry read or write bits	bits eading the AL	RMVAL register					
	101x = Rese 11xx = Rese ALRMPTR< Points to the ALRMPTR< ARPT<7:0>:	e a year (except erved – do not u erved – do not u 1:0>: Alarm Valu corresponding 1:0> value decre Alarm Repeat	ise ue Register W Alarm Value re ements on eve Counter Value	indow Pointer egisters when r ry read or write bits	bits eading the AL	RMVAL register					
	101x = Rese 11xx = Rese ALRMPTR< Points to the ALRMPTR< ARPT<7:0>:	e a year (except erved – do not u erved – do not u 1:0>: Alarm Valu corresponding 1:0> value decre Alarm Repeat	ise ue Register W Alarm Value re ements on eve Counter Value	indow Pointer egisters when r ry read or write bits	bits eading the AL	RMVAL register					
bit 9-8 bit 7-0	101x = Rese 11xx = Rese ALRMPTR< Points to the ALRMPTR<7 ARPT<7:0>: 11111111 =	e a year (except erved – do not u erved – do not u 1:0>: Alarm Valu corresponding 1:0> value decre Alarm Repeat	use Register W Alarm Value re ements on eve Counter Value at 255 more ti	indow Pointer egisters when r ry read or write bits	bits eading the AL	RMVAL register					

REGISTER 27-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER⁽³⁾ (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽¹⁾ 1 = Active-high (PMCS1/PMCS)⁽²⁾ 0 = Active-low (PMCS1/PMCS)
- bit 2 **BEP:** Byte Enable Polarity bit
 - 1 = Byte enable is active-high (PMBE)
 - 0 = Byte enable is active-low (PMBE)
- bit 1
 WRSP: Write Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Write strobe is active-high (PMWR)

 0 = Write strobe is active-low (PMWR)

 For Master Mode 1 (PMMODE<9:8> = 11):

 1 = Enables strobe active-high (PMENB)

 0 = Enables strobe active-low (PMENB)

 0 = Enables strobe active-low (PMENB)

 bit 0
 RDSP: Read Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Read strobe is active-high (PMRD)
 - 0 = Read strobe is active-ligh (PMRD)
 - 0 Read Strobe is active-low (FIVIRD)
 - For Master Mode 1 (PMMODE<9:8> = 11):
 - 1 = Enables strobe active-high (PMRD/PMWR)
 - 0 = Enables strobe active-low (PMRD/PMWR)
- **Note 1:** These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.
 - 3: This register is not available on 44-pin devices.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0		
bit 15							bit 8		
D/// 0			DAMA	DAMA	DAALO	DAMO	DAMA		
R/W-0 WAITB1 ^{(1,}	R/W-0 2,3) WAITB0 ^(1,2,3)	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 WAITE1 ^(1,2,3)	R/W-0 WAITE0 ^{(1,2,3}		
	2,3) VVAITB0(1,2,3)	WAITM3	WAITM2	WAITM1	WAITM0	VVAITE1(1,2,3)			
bit 7							bit		
Legend:									
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'			
-n = Value at Reset		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15		oit (Master mod	de only)						
	1 = Port is bus 0 = Port is not								
bit 14-13		nterrupt Reque	est Mode bits						
		• •		uffer 3 is read	or Write Buff	er 3 is written	(Buffered PS		
			ite operation w	/hen PMA<1:0>	> = 11 (Addres	sable PSP mod	de only)		
	10 = Reserve			a read/write av	-l				
		rupt is generated a		e read/write cy	cie				
bit 12-11		ncrement Mod							
	11 = PSP rea	d and write but	ffers auto-incre	ement (Legacy	acy PSP mode only)				
		ent ADDR by 1	•	•					
		nt ADDR by 1 of ment or decrer	•	•					
bit 10		6-Bit Mode bit	nent of addres	5					
			er is 16 hits a	read/write to th	na Nata regista	er invokes two 8	-hit transfers		
						nvokes one 8-b			
bit 9-8	MODE<1:0>:	Parallel Slave	Port Mode Se	lect bits					
	11 = Master N	Node 1 (PMCS	x, PMRD/ PM V	VR, PMENB, PI	MBE, PMA <x:< td=""><td>0> and PMD<7:</td><td>:0>)</td></x:<>	0> and PMD<7:	:0>)		
				NR, PMBE, PM			. .		
						0> and PMA<1:0 5x and PMD<7:0			
bit 7-6				-		figuration bits ⁽¹	-		
bit 7-0						TP (multiplexed			
						TP (multiplexed			
	01 = Data Wa	it of 2 TP (dem	ultiplexed/mul	tiplexed); addre	ess phase of 2	TP (multiplexed	Í)		
	00 = Data Wa	it of 1 TP (dem	ultiplexed/mul	tiplexed); addre	ess phase of 1	TP (multiplexed	1)		
Note 1:	The applied Wait								
	Section 4.1.8 "W Family Reference				MP) " (DS7057	6) in the <i>"dsPIC</i>	33/PIC24		
2:	WAITB<1:0> and				ITM<3·0> = ∩	000			
2. 3:	$T_P = 1/F_P$.					000.			
0.									

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER⁽⁴⁾

30.6 JTAG Interface

dsPIC33EPXXXGM3XX/6XX/7XX devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to the "dsPIC33/PIC24 Family						
	Reference Manual", "Programming and						
	Diagnostics" (DS70608) for further						
	information on usage, configuration and						
	operation of the JTAG interface.						

30.7 In-Circuit Serial Programming

The dsPIC33EPXXXGM3XX/6XX/7XX devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

30.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or the REAL ICE[™] in-circuit emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB X IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

30.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGM3XX/6XX/7XX devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

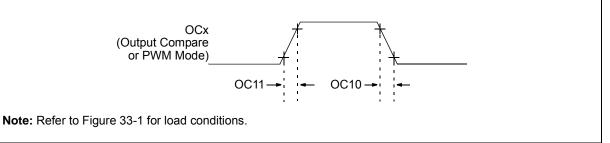
Note: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CodeGuard™ Security" (DS70634) for further information on usage, configuration and operation of CodeGuard Security.

DC CHARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Тур. ⁽²⁾	Max.	Doze Ratio Units Conditions				
Doze Current (IDC	DZE) ⁽¹⁾						
DC73a	20	53	1:2	mA	-40°C	3.3V	70 MIPS
DC73g	8	30	1:128	mA	-40 C	3.3V	
DC70a	19	53	1:2	mA	+25°C	3.3V	60 MIPS
DC70g	8	30	1:128	mA	+25 C	3.3V	
DC71a	20	53	1:2	mA	+85°C	3.3V	
DC71g	10	30	1:128	mA	+00 0	3.3V	60 MIPS
DC72a	25	42	1:2	mA	+125°C	3.3V	
DC72g	12	30	1:128	mA	+125 C	3.3V	50 MIPS

TABLE 33-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

• Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)


- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing

```
while(1)
{
NOP();
}
```

- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

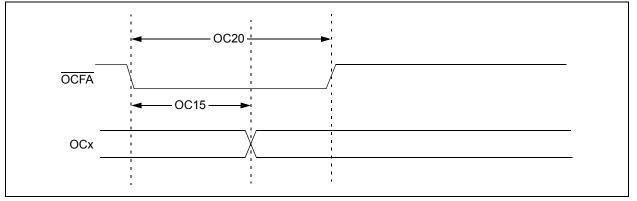


TABLE 33-26: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions					
OC10	TccF	OCx Output Fall Time				ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

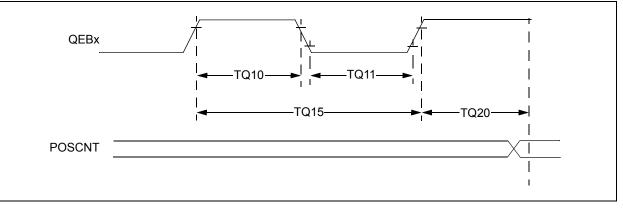


TABLE 33-27: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
OC15	TFD	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-12: TIMERQ (QEIX MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 33-29: QEIX MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

АС СН/	ARACTERIS	STICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with Prescaler	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low TimeSynchronous, with Prescaler		Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with Prescaler	Greater of: 25 + 50 or (1 Tcy/N) + 50	—	_	ns	
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		_	1	Тсү	—	

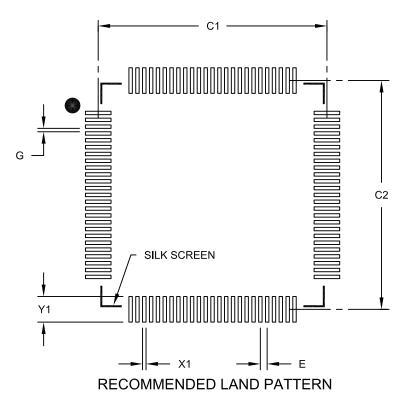
Note 1: These parameters are characterized but not tested in manufacturing.

DC CHARACTERISTICS			(unless othe	erating Condi rwise stated) nperature -40			
Parameter No.	Typical	Мах	Units	Conditions			
HDC40e	3.6	8	mA	+150°C	3.3V	10 MIPS	
HDC42e	5	15	mA	+150°C	3.3V	20 MIPS	
HDC44e	10	20	mA	+150°C	3.3V	40 MIPS	

TABLE 34-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

TABLE 34-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			(unless othe	erating Condi rwise stated) nperature -40		
Parameter No.	Typical	Мах	Units	Conditions		
HDC20	11	25	mA	+150°C	3.3V	10 MIPS
HDC22	15	30	mA	+150°C	3.3V	20 MIPS
HDC23	21	50	mA	+150°C	3.3V	40 MIPS


TABLE 34-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Parameter No.	Typical	Max	Doze Ratio	Units	Conditions			
HDC72a	25	45	1:2	mA	+150°C	3.3V	40 MIPS	
HDC72g ⁽¹⁾	14	33	1:128	mA	+150 C	3.3V	40 IVIIF 3	

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	Dimension Limits			MAX	
Contact Pitch	E	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

INDEX

Α	
Absolute Maximum Ratings	3
AC Characteristics	
10-Bit ADCx Conversion Requirements	7
12-Bit ADCx Conversion Requirements	
12Cx Bus Data (Master Mode) Requirements 484	
ADCx Module49	
ADCx Module (10-Bit Mode) 493, 505	
ADCx Module (12-Bit Mode)	
CANx I/O Requirements	7
Capacitive Loading Requirements on	_
Output Pins	5
DMA Module Requirements	
External Clock Requirements	
I/O Requirements	
I2Cx Bus Data (Slave Mode) Requirements	
Input Capture x (ICx) Requirements	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Internal RC Accuracy	
Load Conditions	
OCx/PWMx Mode Requirements	
Op Amp/Comparator Voltage Reference	
Settling Time	9
Output Compare x (OCx) Requirements454	4
PLL Clock	4
QEIx External Clock Requirements456	6
QEIx Index Pulse Requirements458	8
Quadrature Decoder Requirements 457	7
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer Requirements 450	D
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	4
SPI1 Master Mode (Full-Duplex, CKE = 1,	2
CKP = x, SMP = 1) Requirements	З
Transmit Only) Requirements	2
SPI1 Slave Mode (Full-Duplex, CKE = 0,	~
CKP = 0, $SMP = 0$) Requirements	2
SPI1 Slave Mode (Full-Duplex, CKE = 0,	-
CKP = 1, SMP = 0) Requirements	n
SPI1 Slave Mode (Full-Duplex, CKE = 1,	0
CKP = 0, SMP = 0) Requirements	6
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0) Requirements	8
SPI2, SPI3 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	2
SPI2, SPI3 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Requirements46	1
SPI2, SPI3 Master Mode (Half-Duplex,	_
Transmit Only) Requirements	J
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements470	^
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 0,	J
CKP = 1, $SMP = 0$) Requirements	ρ
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 1,	5
CKP = 0, $SMP = 0$) Requirements	4
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 1,	۲
CKP = 1, SMP = 0) Requirements	6
Temperature and Voltage Specifications	
Timer1 External Clock Requirements	

Timer2 and Timer4 (Type B) External Clock	450
Requirements	452
Timer3 and Timer5 (Type C) External Clock	450
Requirements	
UARTx I/O Requirements	487
ADC	
10-Bit Configuration	327
12-Bit Configuration	327
Control Registers	331
Helpful Tips	330
Key Features	
Assembler	
MPASM Assembler	430
В	
Bit-Reversed Addressing	
Example	100
Implementation	
Sequence Table (16-Entry)	
Block Diagrams	
16-Bit Timer1 Module	211
Accessing Program Momory with	211

Accessing Program Memory with	
Table Instructions	
ADCx Conversion Clock Period	329
ADCx with Connection Options for ANx Pins	
and Op Amps	328
Arbiter Architecture	95
BEMF Voltage Measured Using ADC Module	
Boost Converter Implementation	
CALL Stack Frame	96
CANx Module	
Connections for On-Chip Voltage Regulator	
CPU Core	28
CRC Module	405
CRC Shift Engine	
CTMU Module	322
Data Access from Program Space	
Address Generation	101
DCI Module	
Digital Filter Interconnect	367
DMA Controller	131
dsPIC33EPXXXGM3XX/6XX/7XX Devices	
EDS Read Address Generation	
EDS Write Address Generation	
High-Speed PWMx Architectural Overview	231
High-Speed PWMx Register	
Interconnection Diagram	
I2Cx Module	
Input Capture x Module	
Interleaved PFC	
MCLR Pin Connections	
Multiphase Synchronous Buck Converter	
Multiplexing Remappable Output for RPn	
Op Amp Configuration A	
Op Amp Configuration B	
Op Amp/Comparator Voltage Reference	
Op Amp/Comparator x Module	
Oscillator System	
Output Compare x Module	
Paged Data Memory Space	
Peripheral to DMA Controller	
PLL	144

dsPIC33EPXXXGM3XX/6XX/7XX

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-507-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.