

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm706-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGM3XX/6XX/7XX Digital Signal Controller (DSC) devices.

dsPIC33EPXXXGM3XX/6XX/7XX devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGM3XX/6XX/7XX BLOCK DIAGRAM

Pin Name	Pin Type	Buffer Type	PPS	Description
	1	ST	Yes	Quadrature Encoder Index1 pulse input
HOME1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Home1 pulse input
QEA1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
	-			external clock input in Timer mode.
QEB1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
				external gate input in Timer mode.
CNTCMP1 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 1.
INDX2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Index2 Pulse input.
HOME2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home2 Pulse input.
QEA2 ⁽¹⁾	I.	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary timer
				external clock input in Timer mode.
QEB2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase B input in QEI2 mode. Auxiliary timer
				external gate input in Timer mode.
CNTCMP2 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 2.
COFS	I/O	ST	Yes	Data Converter Interface frame synchronization pin.
CSCK	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.
CSDI	1	ST	Yes	Data Converter Interface serial data input pin.
CSDO	0	—	Yes	Data Converter Interface serial data output pin.
C1RX	I	ST	Yes	CAN1 bus receive pin.
C1TX	0		Yes	CAN1 bus transmit pin
C2RX	I	ST	Yes	CAN2 bus receive pin.
C2TX	0	—	Yes	CAN2 bus transmit pin
RTCC	0		No	Real-Time Clock and Calendar alarm output.
CVREF	0	Analog	No	Comparator Voltage Reference output.
C1IN1+, C1IN2-,	I	Analog	No	Comparator 1 inputs.
C1IN1-, C1IN3-				
C10UT	0	—	Yes	Comparator 1 output.
C2IN1+, C2IN2-,	Ι	Analog	No	Comparator 2 inputs.
C2IN1-, C2IN3-	-		.,	
C2001	0		Yes	Comparator 2 output.
C3IN1+, C3IN2-,	I	Analog	No	Comparator 3 inputs.
C2IN1-, C3IN3-			Vaa	Compositor 2 output
03001	0		res	
C4IN1+, C4IN2-,	I	Analog	No	Comparator 4 inputs.
C4IN1-, C4IN3-	~			
64001	U		res	
C5IN1-, C5IN2-,		Analog	No	Comparator 5 inputs.
C5IN3-, C5IN4-,				
C5IN1+			V	
C5001	0	—	Yes	Comparator 5 output.
Legend: CMOS = CM	10Scc	mnatible	input o	or output Analog = Analog input P = Power

TABLE 1-1:PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

I = Input

TABLE 4-55: PORTD REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30		TRISD	<15:12>		_	—	—	TRISD8		TRISD<6:1>				0160			
PORTD	0E32		RD<1	5:12>			—	_	RD8	—	RD<6:1>				xxxx			
LATD	0E34		LATD<	:15:12>			—	_	LATD8	—	LATD<6:1>				xxxx			
ODCD	0E36		ODCD•	<15:12>			—	_	ODCD8	—	ODCD<6:1>				0000			
CNEND	0E38		CNIED	<15:12>			—	_	CNIED8	—			CNIE	D<6:1>				0000
CNPUD	0E3A		CNPUD	<15:12>			—	_	CNPUD8	—	CNPUD<6:1>				0000			
CNPDD	0E3C		CNPDD	<15:12>			—	_	CNPDD8	—	CNPDD<6:1>				0000			
ANSELD	0E3E	ANSD<	<15:14>	—	-	-	—	_		_	—	_	_	—		—	-	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56: PORTD REGISTER MAP FOR dsPIC33EPXXXGM306/706DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30		_		_	_	_		TRISD8		TRISI	0<6:5>	_					0160
PORTD	0E32		—		—	—	—		RD8	_	RD<	<6:5>	—			_		xxxx
LATD	0E34		—		—	—	—		LATD8		LATE	<6:5>	—			_		xxxx
ODCD	0E36		—		—	—	—		ODCD8		ODC	0<6:5>	—			_		0000
CNEND	0E38		—		—	—	—		CNIED8		CNIE	D<6:5>	—			_		0000
CNPUD	0E3A		—		—	—	—		CNPUD8		CNPU	D<6:5>	—			_		0000
CNPDD	0E3C		_		-	_	_		—	_	_	—	—			_		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTE REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40		TRISE	<15:12>		_	—	TRIS	E<9:8>	—	-	—	—	_	-	TRIS	=<1:0>	F303
PORTE	0E42	RE<15:12>			—	—	RE	<9:8>	_	_	_	_	_	_	RE<	:1:0>	xxxx	
LATE	0E44	LATE<15:12>		_	_	LATE	<9:8>	-	-				-	LATE	<1:0>	xxxx		
ODCE	0E46		ODCE<15:12>		_	_	ODC	E<9:8>	-	-				-	ODCE	<1:0>	0000	
CNENE	0E48		CNIEE	<15:12>		_	—	CNIE	E<9:8>	_	_				—	CNIE	E<1:0>	0000
CNPUE	0E4A		CNPUE	<15:12>		_	—	CNPU	IE<9:8>		_	-	-	-	—	CNPU	E<1:0>	0000
CNPDE	0E4C		CNPDE	<15:12>		_	—	CNPD)E<9:8>		_	-	-	-	—	CNPD	E<1:0>	0000
ANSELE	0E4E	ANSE<15:12>		_	_	ANSI	=<9:8>	-	-				-	ANSE	<1:0>	0000		

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

 bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device was in Sleep mode

 0 = Device was not in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device was in Idle mode

 0 = Device was not in Idle mode

 0 = Device was not in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

bit 0 **POR:** Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK3R<6:0>	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI3R<6:0>			
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	SCK3R<6:0	0>: Assign SPI3	Clock Input (SCK3) to the Co	orresponding l	RPn/RPIn Pin bi	ts
	(see Table	11-2 for input pin	selection nu	mbers)			
	1111111 =	Input tied to RP	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	6				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	SDI3R<6:0	>: Assign SPI3 E	ata Input (SI	DI3) to the Corre	esponding RP	n/RPIn Pin bits	
	(see lable	11-2 for input pin	selection nui	mbers)			
	•	Input tied to RP	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	3				

REGISTER 11-23: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER (CONTINUED)

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

- 2. In Non-Framed 3-Wire mode (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on \overline{SSx} .
- **Note:** This will insure that during power-up and initialization, the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors, for both transmit and receive, appearing as corrupted data.

- 3. FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
- Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 33.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

REGISTER 21-6: CxINTF: CANx INTERRUPT FLAG REGISTER (CONTINUED)

bit 1	RBIF: RX Buffer Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	TBIF: TX Buffer Interrupt Flag bit
	1 = Interrupt request has occurred
	a laterative set is a set is a set of a set o

0 = Interrupt request has not occurred

REGISTER 21-7: CxINTE: CANx INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	IVRIE: Invalid Message Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 6	WAKIE: Bus Wake-up Activity Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 5	ERRIE: Error Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIE: FIFO Almost Full Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	RBIE: RX Buffer Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	TBIE: TX Buffer Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽³⁾
	11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
	 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity):
	High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity):
	Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled.
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Inverting input of op amp/comparator connects to CxIN4- pin 10 = Inverting input of op amp/comparator connects to CxIN3- pin 01 = Inverting input of op amp/comparator connects to CxIN2- pin
Noto 1	UU = inverting input of op amp/comparator connects to CXIN1- pin
NULLE I.	I III UII AI A

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-5: **CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)**

- bit 3 ABEN: AND Gate B Input Enable bit
 - 1 = MBI is connected to the AND gate
 - 0 = MBI is not connected to the AND gate
- bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to the AND gate
- 0 = Inverted MBI is not connected to the AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to the AND gate 0 = MAI is not connected to the AND gate bit 0
 - AANEN: AND Gate A Input Inverted Enable bit
 - 1 = Inverted MAI is connected to the AND gate
 - 0 = Inverted MAI is not connected to the AND gate

REGISTER 27-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

DC CH	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions							
	lı∟	Input Leakage Current ^(1,2)								
D150		I/O Pins 5V Tolerant ⁽³⁾	-1	_	+1	μA	VSS \leq VPIN \leq 5V, Pin at high-impedance			
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$			
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$			
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C			
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$			
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
DI56		OSC1	-5	_	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$			

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10 Vol	Vol	Output Low Voltage 4x Sink Driver Pins ⁽¹⁾	_		0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C},$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$	
		Output Low Voltage 8x Sink Driver Pins ⁽²⁾	_		0.4	V		
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽¹⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		Output High Voltage 8x Source Driver Pins ⁽²⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
DO20A	Von1	Output High Voltage	1.5		_	V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		4x Source Driver Pills, 7	2.0	_	_		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			3.0	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		Output High Voltage 8x Source Driver Pins ⁽²⁾	1.5	_	_	V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			2.0	_	—		$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
			3.0		—		$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	

TABLE 33-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3>
 For 64-pin devices: RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7>
 For 100-pin devices: RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 33-12: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standa (unless Operati	rd Opera otherw ng temp	ating Co rise state erature	pnditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Min. ⁽¹⁾ Typ. Max.		Units	Conditions	
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.7		2.95	V	V _{DD} (Note 2, Note 3)	
PO10	VPOR	POR Event on VDD Transition High-to-Low	1.75	_	1.95	V	(Note 2)	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The VBOR specification is relative to VDD.

3: The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized.

TABLE 33-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{Fosc}}$$

$$\frac{Fosc}{\sqrt{Time Base or Communication Clock}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 33-18: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Internal	FRC Accuracy @ FRC Fre	equency	= 7.3728	MHz ⁽¹⁾				
F20a	FRC	-1.5	0.5	+1.5	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F20b	FRC	-2	1.5	+2	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V	

Note 1: Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 33-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
LPRC (@ 32.768 kHz							
F21a	LPRC	-15	5	+15	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F21b	LPRC	-30	10	+30	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V	

^{© 2013-2014} Microchip Technology Inc.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

TABLE 33-26: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	_	_		ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	—	—		ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 33-27: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC15	Tfd	Fault Input to PWMx I/O Change	_	—	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min. Typ. Max. U		Units	Conditions			
		ADC Ac	curacy (1	2-Bit Mo	ode) – Vr	REF-			
AD20a	AD20a Nr Resolution			2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-3	—	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD22a	DNL	Differential Nonlinearity	≥ 1	_	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD23a	Gerr	Gain Error	-10	-	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD24a	EOFF	Offset Error	-5	-	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD25a	—	Monotonicity	—	—	_	_	Guaranteed		
Dynamic Performance (12-Bit Mode)									
AD30a	THD	Total Harmonic Distortion	_		-75	dB			
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB			
AD32a	SFDR	Spurious Free Dynamic Range	80	—	—	dB			
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz			
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits			

TABLE 33-57: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-38: ADC1 CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

34.1 High-Temperature DC Characteristics

Charactoristic	VDD Range	Temperature Range	Max MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EPXXXGM3XX/6XX/7XX		
HDC5	3.0 to 3.6V ⁽¹⁾	-40°C to +150°C	40		

TABLE 34-1: OPERATING MIPS VS. VOLTAGE

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

TABLE 34-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+155	°C
Operating Ambient Temperature Range	TA	-40		+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o		W	
Maximum Allowed Power Dissipation	PDMAX	(Tj — Ta)/θja			W

TABLE 34-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$								
Parameter No. Symbol Chara		Characteristic	Min Typ Max Units C				Conditions		
Operating Voltage									
HDC10	Supply Voltage								
	Vdd		3.0	3.3	3.6	V	-40°C to +150°C		

TABLE 34-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Parameter No. Typical Max			Units		Conditions				
Power-Down Current (IPD)									
HDC60e	4.1	6	mA	+150°C	3.3V	Base Power-Down Current (Notes 1, 3)			
HDC61c	15	30	μA	+150°C	3.3V	Watchdog Timer Current: ∆IwDT (Notes 2, 4)			

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B