

Welcome to E-XFL.COM

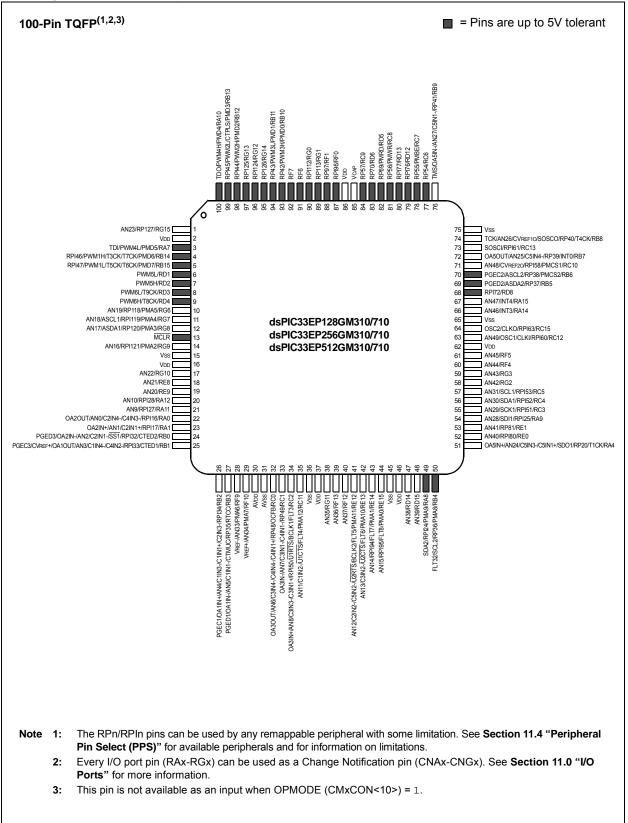
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm706-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

Pin Diagrams (Continued)

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN49	Ι	Analog	No	Analog Input Channels 0-49.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function
CLKO	0	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	I	ST/ CMOS	No	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0	_	No	32.768 kHz low-power oscillator crystal output.
IC1-IC8	I	ST	Yes	Input Capture Inputs 1 through 8.
OCFA OCFB OC1-OC8	 	ST ST	Yes No Yes	Output Compare Fault A input (for compare channels). Output Compare Fault B input (for compare channels). Output Compare 1 through 8.
INT0		ST	No	External Interrupt 0.
INT1	l i	ST	Yes	External Interrupt 1.
INT2	1	ST	Yes	External Interrupt 2.
INT3	I.	ST	No	External Interrupt 3.
INT4	Ι	ST	No	External Interrupt 4.
RA0-RA4, RA7-RA12, RA14-RA15	I/O	ST	Yes	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	Yes	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	Yes	PORTC is a bidirectional I/O port.
RD1-RD6, RD8, RD12-RD15	I/O	ST	Yes	PORTD is a bidirectional I/O port.
RE0-RE1, RE8-RE9, RE12-RE15	I/O	ST	Yes	PORTE is a bidirectional I/O port.
RF0-RF1, RF4-RF7, RF9-RF10, RF12-RF13	I/O	ST	No	PORTF is a bidirectional I/O port.
RG0-RG3, RG6-RG15	I/O	ST	Yes	PORTG is a bidirectional I/O port.
T1CK	Ι	ST	No	Timer1 external clock input.
T2CK		ST	Yes	Timer2 external clock input.
T3CK		ST	No	Timer3 external clock input.
T4CK T5CK		ST ST	No No	Timer4 external clock input.
T6CK		ST	NO	Timer5 external clock input. Timer6 external clock input.
T7CK		ST	No	Timer7 external clock input.
T8CK	l i	ST	No	Timer8 external clock input.
T9CK	i	ST	No	Timer9 external clock input.
Legend: CMOS = CM ST = Schmit	tt Trigg	mpatible er input v	vith CN	or output Analog = Analog input P = Power IOS levels O = Output I = Input
PPS = Perip				TTL = TTL input buffer es. For more information. see the " Pin Diagrams " section for pin

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

|--|

SFR Name	Addr.	Bit 15								All Resets								
OC7CON1	093C	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC7RS	0940		Output Compare 7 Secondary Register xx									xxxx						
OC7R	0942		Output Compare 7 Register xx							xxxx								
OC7TMR	0944		Output Compare 7 Timer Value Register						xxxx									
OC8CON1	0946	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC8CON2	0948	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC8RS	094A		Output Compare 8 Secondary Register x						xxxx									
OC8R	094C								Output	Compare 8	8 Register							xxxx
OC8TMR	094E							Out	put Compa	are 8 Time	Value Regis	ster						xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: QEI1 REGISTER MAP

	15.		ILC IS															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	REIEN - QEISIDL PIMOD2 PIMOD1 PIMOD0 IMV1 IMV0 - INTDIV2 INTDIV1 INTDIV0 CNTPOL GATEN CCM1 CCM0								0000							
QEI1IOC	01C2	QCAPEN	CAPEN FLTREN QFDIV2 QFDIV1 QFDIV0 OUTFNC1 OUTFNC0 SWPAB HOMPOL IDXPOL QEBPOL QEAPOL HOME INDEX QEB QEA							000x								
QEI1STAT	01C4	—	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6		POSCNT<15:0> 00								0000							
POS1CNTH	01C8		POSCNT<31:16> 00								0000							
POS1HLD	01CA		POSHLD<15:0> 000								0000							
VEL1CNT	01CC		VELCNT<15:0> 000								0000							
INT1TMRL	01CE		INTTMR<15:0> 0							0000								
INT1TMRH	01D0		INTTMR<31:16>							0000								
INT1HLDL	01D2								INTHLD<15:0)>								0000
INT1HLDH	01D4							I	NTHLD<31:1	6>								0000
INDX1CNTL	01D6							I	NDXCNT<15:	0>								0000
INDX1CNTH	01D8							IN	NDXCNT<31:	16>								0000
INDX1HLD	01DA							I	NDXHLD<15:	0>								0000
QEI1GECL	01DC							(QEIGEC<15:()>								0000
QEI1ICL	01DC								QEIIC<15:0>	>								0000
QEI1GECH	01DE							(QEIGEC<31:1	6>								0000
QEI1ICH	01DE								QEIIC<31:16	>								0000
QEI1LECL	01E0								QEILEC<15:0)>								0000
QEI1LECH	01E2							(QEILEC<31:1	6>								0000
Lonondi			an Deest				4	a la accuración da accu	a da alma al									

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

 bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device was in Sleep mode

 0 = Device was not in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device was in Idle mode

 0 = Device was not in Idle mode

 0 = Device was not in Idle mode

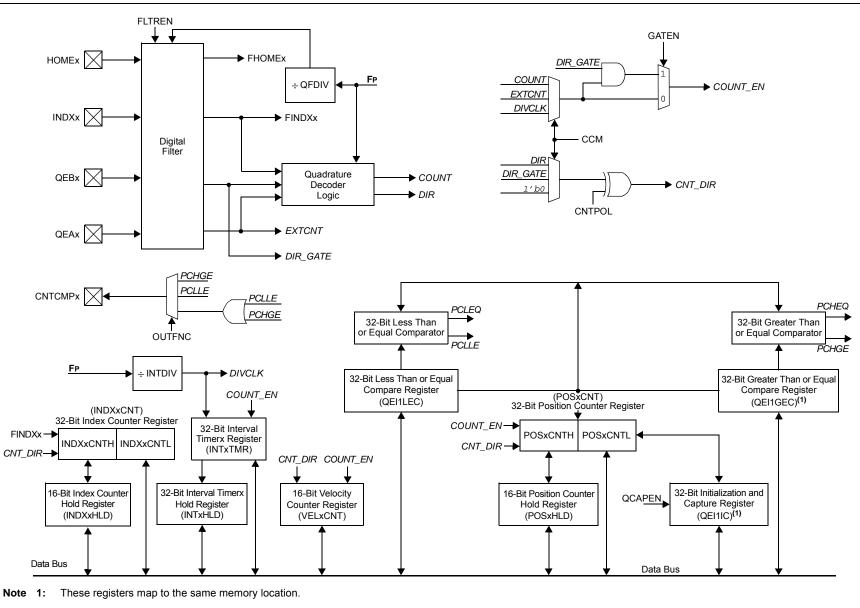
 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

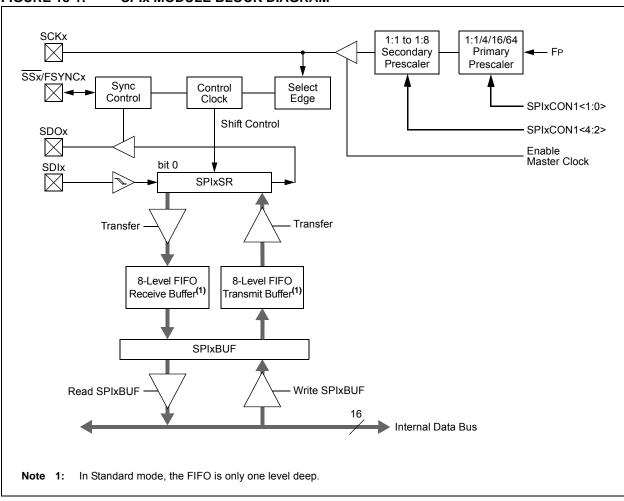
 0 = A Brown-out Reset has not occurred

bit 0 **POR:** Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE				
bit 15	OWNERRY	OVBENIN	00 WILLIN	OOVBENIN	OWNE	OVDIE	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL					
bit 7							bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unk	nown				
bit 15		errupt Nesting									
		nesting is disa									
L:1 4 4	-	nesting is ena		-1							
bit 14			Overflow Trap F erflow of Accur	•							
	•	•	y overflow of A								
bit 13	-		Overflow Trap F								
	1 = Trap was	s caused by ov	erflow of Accur	mulator B							
	0 = Trap was	s not caused by	y overflow of A	ccumulator B							
bit 12		COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator A									
				flow of Accumu							
bit 11			-	Overflow Trap F							
				flow of Accumu							
	•	•	•	overflow of Accu							
bit 10	OVATE: Accumulator A Overflow Trap Enable bit										
	1 = Trap ove 0 = Trap is d	erflow of Accun lisabled	nulator A								
bit 9	OVBTE: Acc	cumulator B Ov	verflow Trap En	able bit							
	1 = Trap ove 0 = Trap is d	erflow of Accun lisabled	ulator B								
bit 8	COVTE: Cat	tastrophic Ove	flow Trap Enal	ole bit							
	1 = Trap on 0 = Trap is d		verflow of Accu	mulator A or B i	s enabled						
bit 7	SFTACERR: Shift Accumulator Error Status bit										
	 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was not caused by an invalid accumulator shift 										
bit 6	DIV0ERR: Divide-by-Zero Error Status bit										
	 1 = Math error trap was caused by a divide-by-zero 0 = Math error trap was not caused by a divide-by-zero 										
bit 5	DMACERR:	DMA Controlle	er Trap Flag bit								
		ntroller trap ha									
		ntroller trap ha									
bit 4		Math Error Sta									
		or trap has occ or trap has not									

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1


REGISTER 11-9: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12
--

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	FX/VV-0	N/W-0	F\/VV-U	FLT2R<6:0>	N/W-U	N/VV-0	FV/VV-U						
 bit 15				1 2121(<0.02			bit 8						
							DILO						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
				FLT1R<6:0>									
bit 7							bit 0						
Legend: R = Readabl	e hit	W = Writable	hit	U = Unimplen	nented hit rea	ad as 'N'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown							
bit 15	Unimplemen	ted: Read as '	0'										
bit 14-8	FLT2R<6:0>: Assign PWM Fault 2 (FLT2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)												
	1111100 = I r	1111100 = Input tied to RPI124											
	•												
	•												
	0000001 = Input tied to CMP1												
	0000000 = Input tied to Vss												
bit 7	Unimplemen	ted: Read as '	0'										
bit 6-0	(see Table 11	Assign PWM I -2 for input pin nput tied to RPI	selection nun) to the Corresp nbers)	onding RPn F	Pin bits							
	•												
		nput tied to CM nput tied to Vss											

FIGURE 17-1: QEIX BLOCK DIAGRAM

JSPIC33EPXXXGM3XX/6XX/7XX

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_		_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾						
bit 15		•					bit						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾						
bit 7							bit						
Legend:													
R = Readable bit		W = Writable	bit	U = Unimplem	nented bit, read	l as '0'							
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown						
bit 15-13	Unimplemer	nted: Read as '	0'										
bit 12	DISSCK: Dis	able SCKx Pin	bit (SPI Maste	er modes only)									
		SPI clock is disa		tions as I/O									
		SPI clock is ena											
bit 11		able SDOx Pir											
	 1 = SDOx pin is not used by the module; pin functions as I/O 0 = SDOx pin is controlled by the module 												
bit 10	•	ord/Byte Comm	-	ect bit									
		 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) 											
	0 = Commun	ication is byte-	wide (8 bits)										
bit 9	SMP: SPIx Data Input Sample Phase bit												
	Master mode												
	 1 = Input data is sampled at the end of data output time 0 = Input data is sampled at the middle of data output time 												
	<u>Slave mode:</u> SMP must be cleared when SPIx is used in Slave mode.												
bit 8		CKE: SPIx Clock Edge Select bit ⁽¹⁾											
	1 = Serial ou	tput data chang	jes on transitio	on from active o	lock state to Id	le clock state (r /e clock state (r	efer to bit 6) efer to bit 6)						
bit 7	 0 = Serial output data changes on transition from Idle clock state to active clock state (refer to bit 6) SSEN: Slave Select Enable bit (Slave mode)⁽²⁾ 												
	$1 = \overline{SSx}$ pin is used for Slave mode												
	$0 = \overline{SSx}$ pin i	$= \overline{SSx}$ pin is not used by the module; pin is controlled by port function											
bit 6	CKP: Clock F	CKP: Clock Polarity Select bit											
		 = Idle state for clock is a high level; active state is a low level = Idle state for clock is a low level; active state is a high level 											
bit 5	MSTEN: Mas	MSTEN: Master Mode Enable bit											
	1 = Master m 0 = Slave mo												
				D									
Note 1: Th	IE CKE DILIS NOL	used in Frame	a SPI modes. I	Program this bit	to 10° for Frame	ea SPI moaes (FRMEN = 1						

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

3: Do not set both primary and secondary prescalers to the value of 1:1.

BUFFER 21-5: CANx MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	3<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	2<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, rea	id as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkı	nown

bit 15-8 Byte 3<15:8>: CANx Message Byte 3

bit 7-0 Byte 2<7:0>: CANx Message Byte 2

BUFFER 21-6: CANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			Byte	5<15:8>						
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			Byte	4<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				

bit 7-0 Byte 4<7:0>: CANx Message Byte 4

32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

32.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

TABLE 33-4 :	DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Conditions				
Operati	ng Voltag	e						
DC10	Vdd	Supply Voltage ⁽³⁾	3.0	_	3.6	V		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.95	—		V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	—	Vss	V		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	—	—	V/ms	0V-3.0V in 3 ms	
DC18	VCORE	VDD Core ⁽³⁾ Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise}\\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Indu}\\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Ext} \end{array}$						$A \le +85^{\circ}C$ for Industrial
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10		μF	Capacitor must have a low series resistance (< 1 Ohm)

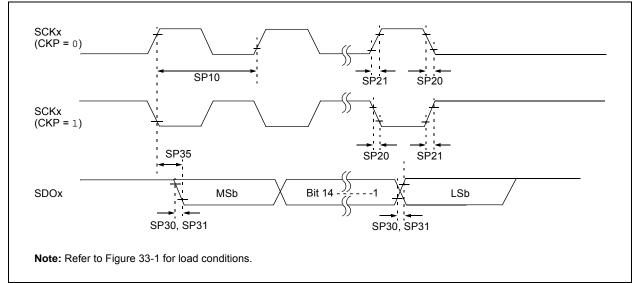
Note 1: Typical VCAP voltage = 1.8 volts when VDD \ge VDDMIN.

DC CH/	ARACTER	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
	VIL	Input Low Voltage							
DI10		Any I/O Pin and MCLR	Vss	_	0.2 VDD	V			
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.8	V	SMBus enabled		
	Vih	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant	0.8 VDD	_	Vdd	V	(Note 3)		
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)		
		I/O Pins with SDAx, SCLx	0.8 VDD	_	5.5	V	SMBus disabled		
		I/O Pins with SDAx, SCLx	2.1	_	5.5	V	SMBus enabled		
	ICNPU	Change Notification Pull-up Current							
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS		
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾							
DI31			20	50	100	μA	VDD = 3.3V, VPIN = VDD		

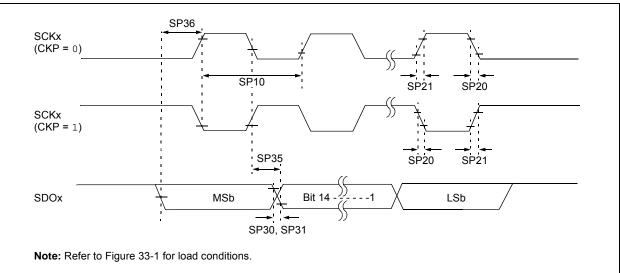
TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.


5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

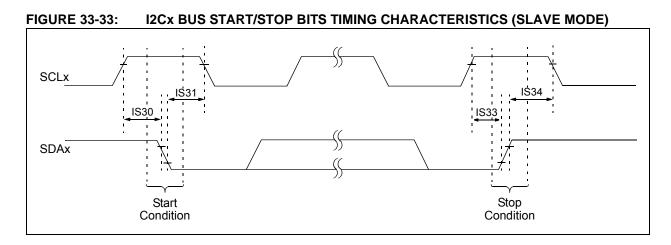
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.


TABLE 33-32:	SPI2 AND SPI3 MAXIMUM DATA/CLOCK RATE SUMMARY
---------------------	---

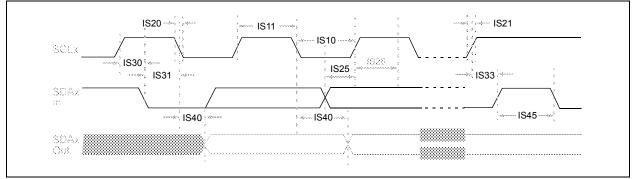
AC CHARAG	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Maximum Data Rate	Master Transmit Only (Half-Duplex)	it Only Transmit/Receive Transmit/Receive		CKE	СКР	SMP			
15 MHz	Table 33-33		—	0,1	0,1	0,1			
9 MHz	—	Table 33-34	—	1	0,1	1			
9 MHz	—	Table 33-35	—	0	0,1	1			
15 MHz	—	—	Table 33-36	1	0	0			
11 MHz	_	_	Table 33-37	1	1	0			
15 MHz	_	_	Table 33-38	0	1	0			
11 MHz	_	_	Table 33-39	0	0	0			

FIGURE 33-15: SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 33-33:SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY)TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP10	FscP	Maximum SCKx Frequency	_	_	15	MHz	(Note 3)	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

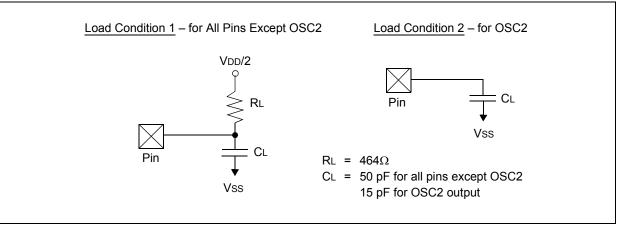
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHA	RACTERI	STICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characte	eristic ⁽³⁾	Min.	Max.	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs			
			400 kHz mode	1.3	_	μS			
			1 MHz mode ⁽¹⁾	0.5		μS			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	-	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5		μs			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	300	ns			
IS25	TSU:DAT	Setup Time	100 kHz mode	250	_	ns			
			400 kHz mode	100		ns			
			1 MHz mode ⁽¹⁾	100	_	ns			
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	μS			
			400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μS			
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	_	μS	Only relevant for Repeat Start condition		
			400 kHz mode	0.6		μS			
			1 MHz mode ⁽¹⁾	0.25		μS			
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μs	After this period, the first		
			400 kHz mode	0.6		μS	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25		μS			
IS33	Tsu:sto		100 kHz mode	4.7	—	μs			
		Setup Time	400 kHz mode	0.6	—	μs			
			1 MHz mode ⁽¹⁾	0.6	—	μs			
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μs			
		Hold Time	400 kHz mode	0.6	—	μs			
			1 MHz mode ⁽¹⁾	0.25		μs			
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns			
		From Clock	400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free		
			400 kHz mode	1.3	—	μS	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5	—	μS	can start		
IS50	Св	Bus Capacitive Lo	ading		400	pF			
IS51	TPGD	Pulse Gobbler De	lay	65	390	ns	(Note 2)		

TABLE 33-49: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


2: The Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

DC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Symbol Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions	
CTMU Curr	ent Source	9						
CTMUI1	IOUT1	Base Range	280	550	830	nA	CTMUICON<9:8> = 01	
CTMUI2	IOUT2	10x Range	2.8	5.5	8.3	μA	CTMUICON<9:8> = 10	
CTMUI3	IOUT3	100x Range	28	55	83	μA	CTMUICON<9:8> = 11	
CTMUI4	IOUT4	1000x Range	280	550	830	μA	CTMUICON<9:8> = 00	
CTMUFV1	VF		—	0.77	_	V		
CTMUFV2	VFVR			-1.38	_	mV/°C		

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

FIGURE 33-37: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

NOTES: