

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 60 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                     |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, Motor Control PWM, POR, PWM, WDT  |
| Number of I/O              | 85                                                                               |
| Program Memory Size        | 256KB (85.5K x 24)                                                               |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 32K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 49x10b/12b                                                                   |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 100-TQFP                                                                         |
| Supplier Device Package    | 100-TQFP (14x14)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm710-e-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

## 2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

#### 2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers
- Dual motor control

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

#### FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION



# 3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359), which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle, effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

#### 3.1 Registers

The dsPIC33EPXXXGM3XX/6XX/7XX devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

#### 3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

#### 3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EP devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to "Data Memory" (DS70595) and "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual" for more details on EDS, PSV and table accesses.

On dsPIC33EP devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

#### 3.4 Addressing Modes

The CPU supports these addressing modes:

- · Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

#### TABLE 4-15: QEI1 REGISTER MAP

| SFR       | Addr. | Bit 15 | Bit 14           | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8       | Bit 7    | Bit 6   | Bit 5    | Bit 4    | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All    |
|-----------|-------|--------|------------------|----------|----------|----------|----------|----------|-------------|----------|---------|----------|----------|--------|--------|--------|--------|--------|
| Name      |       |        |                  |          |          |          |          |          |             |          |         |          |          |        |        |        |        | Resets |
| QEI1CON   | 01C0  | QEIEN  | —                | QEISIDL  | PIMOD2   | PIMOD1   | PIMOD0   | IMV1     | IMV0        | —        | INTDIV2 | INTDIV1  | INTDIV0  | CNTPOL | GATEN  | CCM1   | CCM0   | 0000   |
| QEI1IOC   | 01C2  | QCAPEN | FLTREN           | QFDIV2   | QFDIV1   | QFDIV0   | OUTFNC1  | OUTFNC0  | SWPAB       | HOMPOL   | IDXPOL  | QEBPOL   | QEAPOL   | HOME   | INDEX  | QEB    | QEA    | 000x   |
| QEI1STAT  | 01C4  | _      | _                | PCHEQIRQ | PCHEQIEN | PCLEQIRQ | PCLEQIEN | POSOVIRQ | POSOVIEN    | PCIIRQ   | PCIIEN  | VELOVIRQ | VELOVIEN | HOMIRQ | HOMIEN | IDXIRQ | IDXIEN | 0000   |
| POS1CNTL  | 01C6  |        |                  |          |          |          |          | F        | POSCNT<15:  | )>       |         |          |          |        |        |        |        | 0000   |
| POS1CNTH  | 01C8  |        |                  |          |          |          |          | P        | OSCNT<31:1  | 6>       |         |          |          |        |        |        |        | 0000   |
| POS1HLD   | 01CA  |        |                  |          |          |          |          | F        | POSHLD<15:  | )>       |         |          |          |        |        |        |        | 0000   |
| VEL1CNT   | 01CC  |        |                  |          |          |          |          | ,        | VELCNT<15:0 | )>       |         |          |          |        |        |        |        | 0000   |
| INT1TMRL  | 01CE  |        |                  |          |          |          |          |          | INTTMR<15:( | )>       |         |          |          |        |        |        |        | 0000   |
| INT1TMRH  | 01D0  |        |                  |          |          |          |          | I        | NTTMR<31:1  | 6>       |         |          |          |        |        |        |        | 0000   |
| INT1HLDL  | 01D2  |        |                  |          |          |          |          |          | INTHLD<15:0 | >        |         |          |          |        |        |        |        | 0000   |
| INT1HLDH  | 01D4  |        |                  |          |          |          |          | I        | NTHLD<31:1  | 6>       |         |          |          |        |        |        |        | 0000   |
| INDX1CNTL | 01D6  |        |                  |          |          |          |          | I        | NDXCNT<15:  | 0>       |         |          |          |        |        |        |        | 0000   |
| INDX1CNTH | 01D8  |        |                  |          |          |          |          | IN       | NDXCNT<31:  | 16>      |         |          |          |        |        |        |        | 0000   |
| INDX1HLD  | 01DA  |        |                  |          |          |          |          | I        | NDXHLD<15:  | 0>       |         |          |          |        |        |        |        | 0000   |
| QEI1GECL  | 01DC  |        |                  |          |          |          |          | (        | QEIGEC<15:( | )>       |         |          |          |        |        |        |        | 0000   |
| QEI1ICL   | 01DC  |        |                  |          |          |          |          |          | QEIIC<15:0> | <b>`</b> |         |          |          |        |        |        |        | 0000   |
| QEI1GECH  | 01DE  |        |                  |          |          |          |          | (        | QEIGEC<31:1 | 6>       |         |          |          |        |        |        |        | 0000   |
| QEI1ICH   | 01DE  |        |                  |          |          |          |          |          | QEIIC<31:16 | >        |         |          |          |        |        |        |        | 0000   |
| QEI1LECL  | 01E0  |        | QEILEC<15:0> 001 |          |          |          |          |          |             |          | 0000    |          |          |        |        |        |        |        |
| QEI1LECH  | 01E2  |        |                  |          |          |          |          | (        | QEILEC<31:1 | 6>       |         |          |          |        |        |        |        | 0000   |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## 8.1 DMA Controller Registers

Each DMA Controller Channel x (where x = 0 through 3) contains the following registers:

- 16-bit DMA Channel x Control Register (DMAxCON)
- 16-bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-bit DMA Channel x Start Address Register A (DMAxSTAL/H)
- 32-bit DMA Channel x Start Address Register B (DMAxSTBL/H)
- 16-bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADRL/H) are common to all DMA Controller channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

#### **REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER**

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0   |
|--------|-------|-------|-------|-------|-----|-----|-------|
| CHEN   | SIZE  | DIR   | HALF  | NULLW | —   |     | —     |
| bit 15 |       |       |       |       |     |     | bit 8 |
|        |       |       |       |       |     |     |       |

| U-0   | U-0 | R/W-0  | R/W-0  | U-0 | U-0 | R/W-0 | R/W-0 |
|-------|-----|--------|--------|-----|-----|-------|-------|
| —     | —   | AMODE1 | AMODE0 | —   | —   | MODE1 | MODE0 |
| bit 7 |     |        |        |     |     |       | bit 0 |

# Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

| bit 15   | CHEN: Channel Enable bit                                                                                                                                                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>1 = Channel is enabled</li> <li>0 = Channel is disabled</li> </ul>                                                                                                                                                                                                                  |
| bit 14   | SIZE: Data Transfer Size bit                                                                                                                                                                                                                                                                 |
|          | 1 = Byte<br>0 = Word                                                                                                                                                                                                                                                                         |
| bit 13   | DIR: Transfer Direction bit (source/destination bus select)                                                                                                                                                                                                                                  |
|          | <ul> <li>1 = Reads from RAM address, writes to peripheral address</li> <li>0 = Reads from peripheral address, writes to RAM address</li> </ul>                                                                                                                                               |
| bit 12   | HALF: Block Transfer Interrupt Select bit                                                                                                                                                                                                                                                    |
|          | <ul> <li>1 = Initiates interrupt when half of the data has been moved</li> <li>0 = Initiates interrupt when all of the data has been moved</li> </ul>                                                                                                                                        |
| bit 11   | NULLW: Null Data Peripheral Write Mode Select bit                                                                                                                                                                                                                                            |
|          | <ul> <li>1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear)</li> <li>0 = Normal operation</li> </ul>                                                                                                                                                    |
| bit 10-6 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                   |
| bit 5-4  | AMODE<1:0>: DMA Channel Addressing Mode Select bits                                                                                                                                                                                                                                          |
|          | 11 = Reserved                                                                                                                                                                                                                                                                                |
|          | 10 = Peripheral Indirect mode                                                                                                                                                                                                                                                                |
|          | 00 = Register Indirect with Post-Increment mode                                                                                                                                                                                                                                              |
| bit 3-2  | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                   |
| bit 1-0  | MODE<1:0>: DMA Channel Operating Mode Select bits<br>11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)<br>10 = Continuous, Ping-Pong modes are enabled<br>01 = One-Shot, Ping-Pong modes are disabled<br>00 = Continuous, Ping-Pong modes are disabled |
|          |                                                                                                                                                                                                                                                                                              |

| Input Name <sup>(1)</sup>       | Function Name | Register | Configuration Bits |
|---------------------------------|---------------|----------|--------------------|
| External Interrupt 1            | INT1          | RPINR0   | INT1R<6:0>         |
| External Interrupt 2            | INT2          | RPINR1   | INT2R<6:0>         |
| Timer2 External Clock           | T2CK          | RPINR3   | T2CKR<6:0>         |
| Input Capture 1                 | IC1           | RPINR7   | IC1R<6:0>          |
| Input Capture 2                 | IC2           | RPINR7   | IC2R<6:0>          |
| Input Capture 3                 | IC3           | RPINR8   | IC3R<6:0>          |
| Input Capture 4                 | IC4           | RPINR8   | IC4R<6:0>          |
| Input Capture 5                 | IC5           | RPINR9   | IC5R<6:0>          |
| Input Capture 6                 | IC6           | RPINR9   | IC6R<6:0>          |
| Input Capture 7                 | IC7           | RPINR10  | IC7R<6:0>          |
| Input Capture 8                 | IC8           | RPINR10  | IC8R<6:0>          |
| Output Compare Fault A          | OCFA          | RPINR11  | OCFAR<6:0>         |
| PWM Fault 1                     | FLT1          | RPINR12  | FLT1R<6:0>         |
| PWM Fault 2                     | FLT2          | RPINR12  | FLT2R<6:0>         |
| QEI1 Phase A                    | QEA1          | RPINR14  | QEA1R<6:0>         |
| QEI1 Phase B                    | QEB1          | RPINR14  | QEB1R<6:0>         |
| QEI1 Index                      | INDX1         | RPINR 15 | INDX1R<6:0>        |
| QEI1 Home                       | HOME1         | RPINR15  | HOM1R<6:0>         |
| QEI2 Phase A                    | QEA2          | RPINR16  | QEA2R<6:0>         |
| QEI2 Phase B                    | QEB2          | RPINR16  | QEB2R<6:0>         |
| QEI2 Index                      | INDX2         | RPINR17  | INDX2R<6:0>        |
| QEI2 Home                       | HOME2         | RPINR17  | HOM2R<6:0>         |
| UART1 Receive                   | U1RX          | RPINR18  | U1RXR<6:0>         |
| UART2 Receive                   | U2RX          | RPINR19  | U2RXR<6:0>         |
| SPI2 Data Input                 | SDI2          | RPINR22  | SDI2R<6:0>         |
| SPI2 Clock Input                | SCK2          | RPINR22  | SCK2R<6:0>         |
| SPI2 Slave Select               | SS2           | RPINR23  | SS2R<6:0>          |
| DCI Data Input                  | CSDI          | RPINR24  | CSDIR>6:0>         |
| DCI Clock Input                 | CSCK          | RPINR24  | CSCKR<6:0>         |
| DCI Frame Synchronization Input | COFS          | RPINR25  | COFSR<6:0>         |
| CAN1 Receive <sup>(2)</sup>     | C1RX          | RPINR26  | C1RXR<6:0>         |
| CAN2 Receive <sup>(2)</sup>     | C2RX          | RPINR26  | C2RXR<6:0>         |
| UART3 Receive                   | U3RX          | RPINR27  | U3RXR<6:0>         |
| UART3 Clear-to-Send             | U3CTS         | RPINR27  | U3CTSR<6:0>        |
| UART4 Receive                   | U4RX          | RPINR28  | U4RXR<6:0>         |
| UART4 Clear-to-Send             | U4CTS         | RPINR28  | U4CTSR<6:0>        |
| SPI3 Data Input                 | SDI3          | RPINR29  | SDI3R<6:0>         |
| SPI3 Clock Input                | SCK3          | RPINR29  | SCK3R<6:0>         |
| SPI3 Slave Select               | SS3           | RPINR 30 | SS3R<6:0>          |

**Note 1:** Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input is available on dsPIC33EPXXXGM6XX/7XX devices only.

| U-0          | R/W-0                    | R/W-0             | R/W-0                        | R/W-0                     | R/W-0           | R/W-0           | R/W-0 |
|--------------|--------------------------|-------------------|------------------------------|---------------------------|-----------------|-----------------|-------|
| _            |                          |                   |                              | HOME2R<6:0                | >               |                 |       |
| bit 15       | ·                        |                   |                              |                           |                 |                 | bit 8 |
|              |                          |                   |                              |                           |                 |                 |       |
| U-0          | R/W-0                    | R/W-0             | R/W-0                        | R/W-0                     | R/W-0           | R/W-0           | R/W-0 |
| _            |                          |                   |                              | INDX2R<6:02               | >               |                 |       |
| bit 7        |                          |                   |                              |                           |                 |                 | bit 0 |
|              |                          |                   |                              |                           |                 |                 |       |
| Legend:      |                          |                   |                              |                           |                 |                 |       |
| R = Readab   | le bit                   | W = Writable      | bit                          | U = Unimpler              | nented bit, rea | ad as '0'       |       |
| -n = Value a | It POR                   | '1' = Bit is set  |                              | '0' = Bit is cle          | ared            | x = Bit is unki | nown  |
|              |                          |                   |                              |                           |                 |                 |       |
| bit 15       | Unimpleme                | nted: Read as '   | 0'                           |                           |                 |                 |       |
| bit 14-8     | HOME2R<6<br>(see Table 1 | :0>: Assign QE    | I2 HOME (HC<br>selection nur | OME2) to the Co<br>mbers) | orresponding I  | RPn Pin bits    |       |
|              | 1111100 =                | Input tied to RPI | 1124                         |                           |                 |                 |       |
|              | •                        |                   |                              |                           |                 |                 |       |
|              | •                        |                   |                              |                           |                 |                 |       |
|              | 0000001 =                | Input tied to CM  | P1                           |                           |                 |                 |       |
|              | 0000000 =                | Input tied to Vss | 8                            |                           |                 |                 |       |
| bit 7        | Unimpleme                | nted: Read as '   | 0'                           |                           |                 |                 |       |
| bit 6-0      | IND2XR<6:                | 0>: Assign QEI2   | INDEX (IND                   | X2) to the Corre          | esponding RP    | n Pin bits      |       |
|              | 1111100 =                | Input tied to RP  | 1124                         | inders)                   |                 |                 |       |
|              | •                        |                   |                              |                           |                 |                 |       |
|              | •                        |                   |                              |                           |                 |                 |       |
|              | •                        |                   | 54                           |                           |                 |                 |       |
|              | 0000001 =                | Input tied to CM  | P1                           |                           |                 |                 |       |
|              | 0000000 -                | input tied to VSS | 2                            |                           |                 |                 |       |

#### REGISTER 11-13: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

#### U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 \_\_\_\_ \_\_\_\_ **BLANKSEL3 BLANKSEL2** BLANKSEL1 **BLANKSEL0** \_\_\_\_ \_\_\_\_ bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHOPSEL2 CHOPSEL1 CHOPHEN CHOPSEL3 CHOPSEL0 CHOPLEN \_ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as state blank source 0010 = PWM2H is selected as state blank source 0001 = PWM1H is selected as state blank source 0000 = No state blanking bit 7-6 Unimplemented: Read as '0' bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits The selected signal will enable and disable (CHOP) the selected PWMx outputs. 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as CHOP clock source 0010 = PWM2H is selected as CHOP clock source 0001 = PWM1H is selected as CHOP clock source 0000 = Chop clock generator is selected as CHOP clock source bit 1 CHOPHEN: PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

#### REGISTER 16-24: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

#### REGISTER 17-2: QEIXIOC: QEIX I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control bit
  - 1 = Pin is at logic '1'
    - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit
  - 1 = Pin is at logic '1'
    - 0 = Pin is at logic '0'
- bit 0 QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit
  - 1 = Pin is at logic '1'
  - 0 = Pin is at logic '0'

# REGISTER 17-17: INTxTMRH: INTERVAL TIMERx HIGH WORD REGISTER

| R/W-0                                                                   | R/W-0 | R/W-0 | R/W-0                              | R/W-0    | R/W-0 | R/W-0 | R/W-0 |  |
|-------------------------------------------------------------------------|-------|-------|------------------------------------|----------|-------|-------|-------|--|
|                                                                         |       |       | INTTM                              | R<31:24> |       |       |       |  |
| bit 15                                                                  |       |       |                                    |          |       |       | bit 8 |  |
|                                                                         |       |       |                                    |          |       |       |       |  |
| R/W-0                                                                   | R/W-0 | R/W-0 | R/W-0                              | R/W-0    | R/W-0 | R/W-0 | R/W-0 |  |
|                                                                         |       |       | INTTM                              | R<23:16> |       |       |       |  |
| bit 7                                                                   |       |       |                                    |          |       |       | bit 0 |  |
|                                                                         |       |       |                                    |          |       |       |       |  |
| Legend:                                                                 |       |       |                                    |          |       |       |       |  |
| R = Readable bit W = Writable bit                                       |       |       | U = Unimplemented bit, read as '0' |          |       |       |       |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr |       |       |                                    | nown     |       |       |       |  |

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

#### REGISTER 17-18: INTxTMRL: INTERVAL TIMERx LOW WORD REGISTER

| R/W-0                                                                 | R/W-0       | R/W-0 | R/W-0                              | R/W-0           | R/W-0 | R/W-0 | R/W-0 |  |
|-----------------------------------------------------------------------|-------------|-------|------------------------------------|-----------------|-------|-------|-------|--|
|                                                                       |             |       | INTTM                              | 1R<15:8>        |       |       |       |  |
| bit 15                                                                |             |       |                                    |                 |       |       | bit 8 |  |
|                                                                       |             |       |                                    |                 |       |       |       |  |
| R/W-0                                                                 | R/W-0       | R/W-0 | R/W-0                              | R/W-0           | R/W-0 | R/W-0 | R/W-0 |  |
|                                                                       | INTTMR<7:0> |       |                                    |                 |       |       |       |  |
| bit 7                                                                 |             |       |                                    |                 |       |       | bit 0 |  |
|                                                                       |             |       |                                    |                 |       |       |       |  |
| Legend:                                                               |             |       |                                    |                 |       |       |       |  |
| R = Readable bit W = Writable bit                                     |             |       | U = Unimplemented bit, read as '0' |                 |       |       |       |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un |             |       |                                    | x = Bit is unkr | nown  |       |       |  |

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

#### REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)<sup>(3)</sup> 111 = Secondary prescale 1:1
  - 110 = Secondary prescale 2:1

  - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)<sup>(3)</sup>
  - 11 = Primary prescale 1:1
  - 10 = Primary prescale 4:1
  - 01 = Primary prescale 16:1
  - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
  - 2: This bit must be cleared when FRMEN = 1.
  - **3:** Do not set both primary and secondary prescalers to the value of 1:1.

NOTES:





| R/W-0                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W-0            | R/W-0             | R/W-0            | R/W-0            | R/W-0           | R/W-0   |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|------------------|-----------------|---------|
| PTGCLK2               | PTGCLK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PTGCLK0          | PTGDIV4           | PTGDIV3          | PTGDIV2          | PTGDIV1         | PTGDIV0 |
| bit 15                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                   |                  |                  |                 | bit 8   |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                   |                  |                  |                 |         |
| R/W-0                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W-0            | R/W-0             | U-0              | R/W-0            | R/W-0           | R/W-0   |
| PTGPWD3               | PTGPWD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PTGPWD1          | PTGPWD0           | —                | PTGWDT2          | PTGWDT1         | PTGWDT0 |
| bit 7                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                | •                 |                  |                  |                 | bit 0   |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                   |                  |                  |                 |         |
| Legend:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                   |                  |                  |                 |         |
| R = Readable          | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W = Writable     | bit               | U = Unimplei     | mented bit, read | l as '0'        |         |
| -n = Value at P       | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '1' = Bit is set |                   | '0' = Bit is cle | eared            | x = Bit is unkr | nown    |
| bit 15-13<br>bit 12-8 | bit 15-13 <b>PTGCLK&lt;2:0&gt;:</b> Select PTG Module Clock Source bits<br>111 = Reserved<br>100 = Reserved<br>101 = PTG module clock source will be T3CLK<br>100 = PTG module clock source will be T2CLK<br>011 = PTG module clock source will be T1CLK<br>010 = PTG module clock source will be FAD<br>001 = PTG module clock source will be Fosc<br>000 = PTG module clock source will be FP<br>bit 12-8 <b>PTGDIV&lt;4:0&gt;:</b> PTG Module Clock Prescaler (divider) bits<br>11111 = Divide-by-32<br>11110 = Divide-by-31<br>00001 = Divide-by-2<br>00000 = Divide-by-1                                                                                                                                                                                          |                  |                   |                  |                  |                 |         |
| bit 7-4               | PTGPWD<3:0>: PTG Trigger Output Pulse-Width bits         1111 = All trigger outputs are 16 PTG clock cycles wide         1110 = All trigger outputs are 15 PTG clock cycles wide         •         •         0001 = All trigger outputs are 2 PTG clock cycles wide         0000 = All trigger outputs are 1 PTG clock cycles wide         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         • |                  |                   |                  |                  |                 |         |
| bit 2-0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0>: Select PTG   | ~<br>Watchdog Tir | mer Time-out     | Count Value hits | 3               |         |
| UIL 2-U               | <ul> <li>Figwp1&lt;2:0&gt;: Select PTG watchdog Timer Time-Out Count Value bits</li> <li>111 = Watchdog Timer will time-out after 512 PTG clocks</li> <li>101 = Watchdog Timer will time-out after 128 PTG clocks</li> <li>100 = Watchdog Timer will time-out after 64 PTG clocks</li> <li>011 = Watchdog Timer will time-out after 32 PTG clocks</li> <li>011 = Watchdog Timer will time-out after 64 PTG clocks</li> <li>011 = Watchdog Timer will time-out after 32 PTG clocks</li> <li>010 = Watchdog Timer will time-out after 16 PTG clocks</li> <li>010 = Watchdog Timer will time-out after 8 PTG clocks</li> <li>001 = Watchdog Timer will time-out after 8 PTG clocks</li> <li>001 = Watchdog Timer will time-out after 8 PTG clocks</li> </ul>              |                  |                   |                  |                  |                 |         |

#### REGISTER 25-2: PTGCON: PTG CONTROL REGISTER

| bit 3-0 | Step<br>Command        | OPTION<3:0> | Option Description                          |
|---------|------------------------|-------------|---------------------------------------------|
|         | PTGWHI(1)              | 0000        | PWM Special Event Trigger                   |
|         | or (1)                 | 0001        | PWM master time base synchronization output |
|         | PTGWLO("               | 0010        | PWM1 interrupt                              |
|         |                        | 0011        | PWM2 interrupt                              |
|         |                        | 0100        | PWM3 interrupt                              |
|         |                        | 0101        | PWM4 interrupt                              |
|         |                        | 0110        | PWM5 interrupt                              |
|         |                        | 0111        | OC1 Trigger Event                           |
|         |                        | 1000        | OC2 Trigger Event                           |
|         |                        | 1001        | IC1 Trigger Event                           |
|         |                        | 1010        | CMP1 Trigger Event                          |
|         |                        | 1011        | CMP2 Trigger Event                          |
|         |                        | 1100        | CMP3 Trigger Event                          |
|         |                        | 1101        | CMP4 Trigger Event                          |
|         |                        | 1110        | ADC conversion done interrupt               |
|         |                        | 1111        | INT2 external interrupt                     |
|         | PTGIRQ(1)              | 0000        | Generate PTG Interrupt 0                    |
|         |                        | 0001        | Generate PTG Interrupt 1                    |
|         |                        | 0010        | Generate PTG Interrupt 2                    |
|         |                        | 0011        | Generate PTG Interrupt 3                    |
|         |                        | 0100        | Reserved                                    |
|         |                        | •           | •                                           |
|         |                        | •           | •                                           |
|         |                        | 1111        | Reserved                                    |
|         | PTGTRIG <sup>(2)</sup> | 00000       | PTG00                                       |
|         |                        | 00001       | PTGO1                                       |
|         |                        | •           | •                                           |
|         |                        | •           | •                                           |
|         |                        | •           |                                             |
|         |                        | 11110       | PTGO30                                      |
|         |                        | 11111       | PTGO31                                      |

TABLE 25-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

| Base<br>Instr<br># | Assembly<br>Mnemonic | Assembly Syntax |                             | Description                                 | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|--------------------|----------------------|-----------------|-----------------------------|---------------------------------------------|---------------|----------------|--------------------------|
| 25                 | DAW                  | DAW Wn          |                             | Wn = decimal adjust Wn                      | 1             | 1              | С                        |
| 26                 | DEC                  | DEC             | f                           | f = f - 1                                   |               | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC             | f,WREG                      | WREG = f – 1                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC             | Ws,Wd                       | Wd = Ws - 1                                 | 1             | 1              | C,DC,N,OV,Z              |
| 27                 | DEC2                 | DEC2            | f                           | f = f - 2                                   | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2            | f,WREG                      | WREG = f – 2                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | DEC2            | Ws,Wd                       | Wd = Ws – 2                                 | 1             | 1              | C,DC,N,OV,Z              |
| 28                 | DISI                 | DISI            | #lit14                      | Disable Interrupts for k instruction cycles | 1             | 1              | None                     |
| 29                 | DIV                  | DIV.S           | Wm,Wn                       | Signed 16/16-bit Integer Divide             | 1             | 18             | N,Z,C,OV                 |
|                    |                      | DIV.SD          | Wm,Wn                       | Signed 32/16-bit Integer Divide             | 1             | 18             | N,Z,C,OV                 |
|                    |                      | DIV.U           | Wm,Wn                       | Unsigned 16/16-bit Integer Divide           |               | 18             | N,Z,C,OV                 |
|                    |                      | DIV.UD          | Wm,Wn                       | Unsigned 32/16-bit Integer Divide           | 1             | 18             | N,Z,C,OV                 |
| 30                 | DIVF                 | DIVF            | Wm,Wn                       | Signed 16/16-bit Fractional Divide          | 1             | 18             | N,Z,C,OV                 |
| 31                 | DO                   | DO              | #lit15,Expr                 | Do code to PC + Expr, lit15 + 1 times       | 2             | 2              | None                     |
|                    |                      | DO              | Wn,Expr                     | Do code to PC + Expr, (Wn) + 1 times        | 2             | 2              | None                     |
| 32                 | ED                   | ED              | Wm*Wm,Acc,Wx,Wy,Wxd         | Euclidean Distance (no accumulate)          | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 33                 | EDAC                 | EDAC            | Wm*Wm,Acc,Wx,Wy,Wxd         | Euclidean Distance                          | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 34                 | EXCH                 | EXCH            | Wns,Wnd                     | Swap Wns with Wnd                           | 1             | 1              | None                     |
| 35                 | FBCL                 | FBCL            | Ws,Wnd                      | Find Bit Change from Left (MSb) Side        | 1             | 1              | С                        |
| 36                 | FF1L                 | FF1L            | Ws,Wnd                      | Find First One from Left (MSb) Side         | 1             | 1              | С                        |
| 37                 | FF1R                 | FF1R            | Ws,Wnd                      | Find First One from Right (LSb) Side        | 1             | 1              | С                        |
| 38                 | GOTO                 | GOTO            | Expr                        | Go to address                               | 2             | 4              | None                     |
|                    |                      | GOTO            | Wn                          | Go to indirect                              | 1             | 4              | None                     |
|                    |                      | GOTO.L          | Wn                          | Go to indirect (long address)               | 1             | 4              | None                     |
| 39                 | INC                  | INC             | £                           | f = f + 1                                   | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC             | f,WREG                      | WREG = f + 1                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC             | Ws,Wd                       | Wd = Ws + 1                                 | 1             | 1              | C,DC,N,OV,Z              |
| 40                 | INC2                 | INC2            | £                           | f = f + 2                                   | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC2            | f,WREG                      | WREG = f + 2                                | 1             | 1              | C,DC,N,OV,Z              |
|                    |                      | INC2            | Ws,Wd                       | Wd = Ws + 2                                 | 1             | 1              | C,DC,N,OV,Z              |
| 41                 | IOR                  | IOR             | f                           | f = f .IOR. WREG                            | 1             | 1              | N,Z                      |
|                    |                      | IOR             | f,WREG                      | WREG = f .IOR. WREG                         | 1             | 1              | N,Z                      |
|                    |                      | IOR             | #lit10,Wn                   | Wd = lit10 .IOR. Wd                         | 1             | 1              | N,Z                      |
|                    |                      | IOR             | Wb,Ws,Wd                    | Wd = Wb .IOR. Ws                            | 1             | 1              | N,Z                      |
|                    |                      | IOR             | Wb,#lit5,Wd                 | Wd = Wb .IOR. lit5                          | 1             | 1              | N,Z                      |
| 42                 | LAC                  | LAC             | Wso,#Slit4,Acc              | Load Accumulator                            | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
| 43                 | LNK                  | LNK             | #lit14                      | Link Frame Pointer                          | 1             | 1              | SFA                      |
| 44                 | LSR                  | LSR             | f                           | f = Logical Right Shift f                   | 1             | 1              | C,N,OV,Z                 |
|                    |                      | LSR             | f,WREG                      | WREG = Logical Right Shift f                | 1             | 1              | C,N,OV,Z                 |
|                    |                      | LSR             | Ws,Wd                       | Wd = Logical Right Shift Ws                 | 1             | 1              | C,N,OV,Z                 |
|                    |                      | LSR             | Wb,Wns,Wnd                  | Wnd = Logical Right Shift Wb by Wns         | 1             | 1              | N,Z                      |
|                    |                      | LSR             | Wb,#lit5,Wnd                | Wnd = Logical Right Shift Wb by lit5        | 1             | 1              | N,Z                      |
| 45                 | MAC                  | MAC             | Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB | Multiply and Accumulate                     | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |
|                    |                      | MAC             | Wm*Wm,Acc,Wx,Wxd,Wy,Wyd     | Square and Accumulate                       | 1             | 1              | OA,OB,OAB,<br>SA,SB,SAB  |

#### TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

| AC CHARACTERISTICS |                              |                               |                           | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |            |    |                        |  |
|--------------------|------------------------------|-------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|------------------------|--|
| Param<br>No.       | Symbol                       | Characteristic <sup>(4)</sup> |                           | Min. <sup>(1)</sup>                                                                                                                                                                                                                                                                     | Max. Units |    | Conditions             |  |
| IM10               | TLO:SCL                      | Clock Low Time                | 100 kHz mode              | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         | _          | μs |                        |  |
|                    |                              |                               | 400 kHz mode              | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μS |                        |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         | _          | μs |                        |  |
| IM11               | THI:SCL                      | Clock High Time               | 100 kHz mode              | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         | _          | μs |                        |  |
|                    |                              |                               | 400 kHz mode              | TCY/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs |                        |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | TCY/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs |                        |  |
| IM20               | TF:SCL                       | SDAx and SCLx<br>Fall Time    | 100 kHz mode              | —                                                                                                                                                                                                                                                                                       | 300        | ns | CB is specified to be  |  |
|                    |                              |                               | 400 kHz mode              | 20 + 0.1 Св                                                                                                                                                                                                                                                                             | 300        | ns | from 10 to 400 pF      |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | —                                                                                                                                                                                                                                                                                       | 100        | ns |                        |  |
| IM21               | TR:SCL                       | SDAx and SCLx<br>Rise Time    | 100 kHz mode              | —                                                                                                                                                                                                                                                                                       | 1000       | ns | CB is specified to be  |  |
|                    |                              |                               | 400 kHz mode              | 20 + 0.1 Св                                                                                                                                                                                                                                                                             | 300        | ns | from 10 to 400 pF      |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | —                                                                                                                                                                                                                                                                                       | 300        | ns |                        |  |
| IM25               | TSU:DAT                      | Data Input                    | 100 kHz mode              | 250                                                                                                                                                                                                                                                                                     |            | ns |                        |  |
|                    |                              | Setup Time                    | 400 kHz mode              | 100                                                                                                                                                                                                                                                                                     |            | ns |                        |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | 40                                                                                                                                                                                                                                                                                      |            | ns |                        |  |
| IM26               | THD:DAT                      | Data Input                    | 100 kHz mode              | 0                                                                                                                                                                                                                                                                                       |            | μs |                        |  |
|                    |                              | Hold Time                     | 400 kHz mode              | 0                                                                                                                                                                                                                                                                                       | 0.9        | μS |                        |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | 0.2                                                                                                                                                                                                                                                                                     |            | μs |                        |  |
| IM30               | Tsu:sta                      | Start Condition<br>Setup Time | 100 kHz mode              | TCY/2 (BRG + 2)                                                                                                                                                                                                                                                                         | —          | μs | Only relevant for      |  |
|                    |                              |                               | 400 kHz mode              | TCY/2 (BRG + 2)                                                                                                                                                                                                                                                                         | —          | μs | Repeated Start         |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs | condition              |  |
| IM31               | THD:STA                      | Start Condition<br>Hold Time  | 100 kHz mode              | TCY/2 (BRG + 2)                                                                                                                                                                                                                                                                         | —          | μs | After this period, the |  |
|                    |                              |                               | 400 kHz mode              | TCY/2 (BRG +2)                                                                                                                                                                                                                                                                          |            | μs | first clock pulse is   |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μS | generated              |  |
| IM33               | Tsu:sto                      | Stop Condition<br>Setup Time  | 100 kHz mode              | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs |                        |  |
|                    |                              |                               | 400 kHz mode              | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs |                        |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs |                        |  |
| IM34               | THD:STO                      | Stop Condition                | 100 kHz mode              | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs |                        |  |
|                    |                              | Hold Time                     | 400 kHz mode              | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μs |                        |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | Tcy/2 (BRG + 2)                                                                                                                                                                                                                                                                         |            | μS |                        |  |
| IM40               | TAA:SCL                      | Output Valid                  | 100 kHz mode              | _                                                                                                                                                                                                                                                                                       | 3500       | ns |                        |  |
|                    |                              | From Clock                    | 400 kHz mode              |                                                                                                                                                                                                                                                                                         | 1000       | ns |                        |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | _                                                                                                                                                                                                                                                                                       | 400        | ns |                        |  |
| IM45               | TBF:SDA                      | Bus Free Time                 | 100 kHz mode              | 4.7                                                                                                                                                                                                                                                                                     | _          | μS | Time the bus must be   |  |
|                    |                              |                               | 400 kHz mode              | 1.3                                                                                                                                                                                                                                                                                     | —          | μS | free before a new      |  |
|                    |                              |                               | 1 MHz mode <sup>(2)</sup> | 0.5                                                                                                                                                                                                                                                                                     | —          | μS | transmission can start |  |
| IM50               | Св                           | Bus Capacitive L              | oading                    | —                                                                                                                                                                                                                                                                                       | 400        | pF |                        |  |
| IM51               | 151 TPGD Pulse Gobbler Delay |                               | elay                      | 65                                                                                                                                                                                                                                                                                      | 390        | ns | (Note 3)               |  |

#### TABLE 33-48: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I<sup>2</sup>C Baud Rate Generator. Refer to the "*dsPIC33/PIC24 Family Reference* Manual", "Inter-Integrated Circuit™ (I<sup>2</sup>C™)" (DS70000195). Please see the Microchip web site for the latest "*dsPIC33E/PIC24E Family Reference Manual*" sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

**3:** Typical value for this parameter is 130 ns.

4: These parameters are characterized, but not tested in manufacturing.

# dsPIC33EPXXXGM3XX/6XX/7XX



#### FIGURE 33-38: ADC1 CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

#### 35.2 Package Details

#### 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Lead Pitch               |    | 0.80 BSC  |      |      |  |
|--------------------------|----|-----------|------|------|--|
| Overall Height           |    | -         | -    | 1.20 |  |
| Molded Package Thickness |    | 0.95      | 1.00 | 1.05 |  |
| Standoff                 |    | 0.05      | -    | 0.15 |  |
| Foot Length              |    | 0.45      | 0.60 | 0.75 |  |
| Footprint                | L1 | 1.00 REF  |      |      |  |
| Foot Angle               | φ  | 0°        | 3.5° | 7°   |  |
| Overall Width            | E  | 12.00 BSC |      |      |  |
| Overall Length           | D  | 12.00 BSC |      |      |  |
| Molded Package Width     | E1 | 10.00 BSC |      |      |  |
| Molded Package Length    | D1 | 10.00 BSC |      |      |  |
| Lead Thickness           | С  | 0.09      | -    | 0.20 |  |
| Lead Width               | b  | 0.30      | 0.37 | 0.45 |  |
| Mold Draft Angle Top     | α  | 11°       | 12°  | 13°  |  |
| Mold Draft Angle Bottom  | β  | 11°       | 12°  | 13°  |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

#### 100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

β

11°

12°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

13°

# 121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



NX Øb

A B

С

С

0.15M

0.08M

Ð







ΩΟ(

0 0 C

000

|                    | MILLIMETERS |           |      |      |  |
|--------------------|-------------|-----------|------|------|--|
| Dimension          | MIN         | NOM       | MAX  |      |  |
| Number of Contacts | Ν           | 121       |      |      |  |
| Contact Pitch      | е           | 0.80 BSC  |      |      |  |
| Overall Height     | Α           | 1.00      | 1.10 | 1.20 |  |
| Ball Height        | A1          | 0.25      | 0.30 | 0.35 |  |
| Overall Width      | E           | 10.00 BSC |      |      |  |
| Array Width        | E1          | 8.00 BSC  |      |      |  |
| Overall Length     | D           | 10.00 BSC |      |      |  |
| Array Length       | D1          | 8.00 BSC  |      |      |  |
| Contact Diameter   | b           | 0.35      | 0.40 | 0.45 |  |

Notes:

- 1. Ball A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
  - REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.
- 4. Ball interface to package body: 0.37mm nominal diameter.

Microchip Technology Drawing C04-148 Rev F Sheet 2 of 2