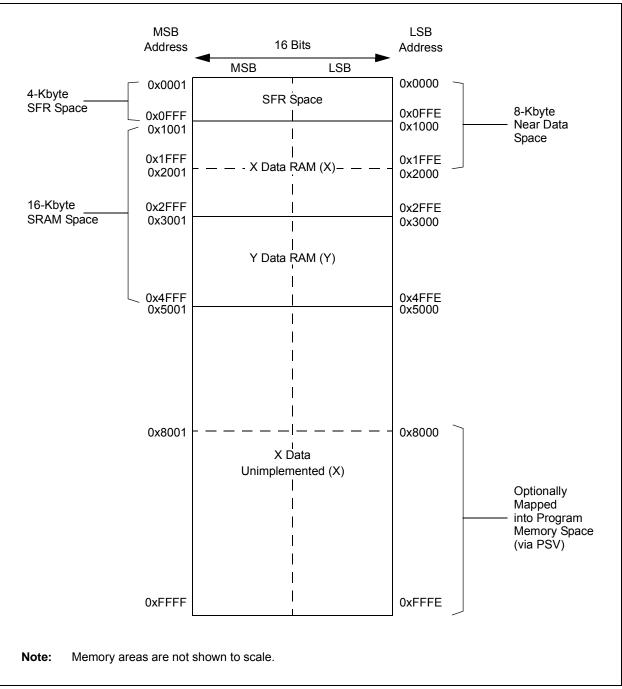


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm710-h-bg

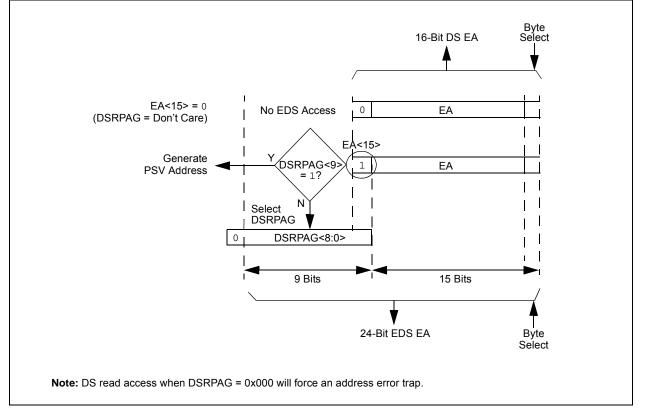
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IABLE 4-	ZZ .	ADO			REGIST			NOLD)										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF9	0352								ADC2 Da	ata Buffer	9							xxxx
ADC2BUFA	0354								ADC2 Da	ta Buffer 1	10							xxxx
ADC2BUFB	0356								ADC2 Da	ta Buffer ´	11							xxxx
ADC2BUFC	0358		ADC2 Data Buffer 12							xxxx								
ADC2BUFD	035A	ADC2 Data Buffer 13						xxxx										
ADC2BUFE	035C								ADC2 Da	ta Buffer 1	14							xxxx
ADC2BUFF	035E								ADC2 Da	ta Buffer 1	15							xxxx
AD2CON1	0360	ADON	_	ADSIDL	ADDMABM		AD12B	FORM1	FORM0	SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	VCFG2	VCFG1	VCFG0	OFFCAL		CSCNA	CHPS1	CHPS0	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD2CON3	0364	ADRC	-	_	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD2CHS123	0366	—	-	_	CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0	_	_	_	CH123SA2	CH123SA1	CH123NA1	CH123NA0	CH123SA0	0000
AD2CHS0	0368	CH0NB	-	CH0SB5(1)	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA	_	CH0SA5(1)	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD2CSSH	036E								CSS<	:31:16>								0000
AD2CSSL	0370								CSS	<15:0>								0000
AD2CON4	0372	—	_	—	—	—	—	—	ADDMAEN	_		_	_	_	DMABL2	DMABL1	DMABL0	0000

TABLE 4-22: ADC1 AND ADC2 REGISTER MAP (CONTINUED)

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


Note 1: Bits 13 and bit 5 are reserved in the AD2CHS0 register, unlike the AD1CHS0 register.

4.3.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGM3XX/6XX/7XX architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EA). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an Extended Data Space (EDS) address, or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Figure 4-8. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> =1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS write address.

FIGURE 4-8: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0					
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0					
bit 15							bit 8					
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PLLPOST	1 PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0					
bit 7												
												
Legend:	la hit		L:4	II — Ilucius da un	antad bit was	L == (0'						
R = Readab		W = Writable		•	nented bit, read							
-n = Value a	IL POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWI					
bit 15	ROI: Recover	on Interrupt b	it									
		will clear the D										
		will have no ef		OZEN bit								
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction	Select bits ⁽³⁾								
	111 = Fcy div											
	110 = Fcy div	•										
	101 = FCY div											
		100 = Fcy divided by 16 011 = Fcy divided by 8 (default)										
	010 = FCY div											
	001 = Fcy div											
	000 = FCY div	•										
bit 11		e Mode Enable										
				etween the perip		nd the processo	or clocks					
hit 10 0		•	•	ratio are forced r Postscaler bits								
bit 10-8			RC Oscillator	Posiscaler bits	5							
		111 = FRC divided by 256 110 = FRC divided by 64										
		100 = FRC divided by 84 101 = FRC divided by 32										
	100 = FRC di											
	011 = FRC di											
	010 = FRC di 001 = FRC di	•										
		ivided by 1 (de	fault)									
bit 7-6		•		r Select bits (als	so denoted as	N2', PLL posts	caler)					
	11 = Output o	livided by 8	-			-	·					
	10 = Reserve											
	01 = Output c 00 = Output c	livided by 4 (de	efault)									
bit 5	-	ted: Read as '	0'									
	-			n interment a								
	This bit is cleared				uis.							
	This register resets The DOZE<2:0> b	-			hit is clear. If D		writes to					
	OZE<2:0> b OZE<2:0> are ig	-			on is oreal. If D	∪∠∟iv – ⊥, ally						

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 11-7:	RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_				IC8R<6:0>									
bit 15							bit 8						
U-0	DAMO		DAMO	DANO		DAMO	DAMO						
0-0	R/W-0	R/W-0	R/W-0	R/W-0 IC7R<6:0>	R/W-0	R/W-0	R/W-0						
bit 7				IC/R<0.02			bit 0						
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
bit 15	Unimplemen	ted: Read as '	0'										
bit 14-8		IC8R<6:0>: Assign Input Capture 8 (IC8) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)											
	1111100 = lr	nput tied to RPI	124										
	•												
	•												
	0000001 = lr	nput tied to CM	P1										
	0000000 = Ir	nput tied to Vss											
bit 7	Unimplemen	ted: Read as '	0'										
bit 6-0	(see Table 11	IC7R<6:0>: Assign Input Capture 7 (IC7) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111100 = Input tied to RPI124											
	•												
	•												
		nput tied to CM											

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	—		—	—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				OCFAR<6:0>	>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as '	כ'					
bit 6-0		: Assign Outpu 2 for input pin			to the Correspon	nding RPn Pin	bits	
	1111100 = In	put tied to RPI	124					
	•							
	•							

REGISTER 11-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	—	TSIDL	_	—	—	—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
_	TGATE	TCKPS1	TCKPS1		TSYNC ⁽¹⁾	TCS ⁽¹⁾	—				
bit 7							bit 0				
r											
Legend:											
R = Readable		W = Writable		-	mented bit, read						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN				
	TON: Timer1	o									
bit 15	1 = Starts 16-										
	1 = Starts 16- 0 = Stops 16-										
bit 14	•	ted: Read as ')'								
bit 13	-	1 Stop in Idle N									
	1 = Discontine	ues module op	eration when	device enters I	dle mode						
		s module opera		ode							
bit 12-7	-	ted: Read as '									
bit 6		GATE: Timer1 Gated Time Accumulation Enable bit									
	When TCS = This bit is igno										
	When TCS =										
		e accumulatior	n is enabled								
	0 = Gated tim	e accumulatior	n is disabled								
bit 5-4		: Timer1 Input	Clock Prescal	e Select bits							
	11 = 1:256 10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3	Unimplemen	ted: Read as ')'								
bit 2		er1 External Clo	ock Input Synd	chronization Se	elect bit ⁽¹⁾						
	When TCS = $\frac{1}{1}$		a al ciana ut								
		izes external cl synchronize ex		nout							
	When TCS =	•		iput							
	This bit is igno										
bit 1	TCS: Timer1	Clock Source S	Select bit ⁽¹⁾								
		clock is from pir	n, T1CK (on th	ne rising edge)							
hit 0	0 = Internal cl		۰ ۲								
bit 0	ommplemen	ted: Read as '	J								
	en Timer1 is en mpts by user s				ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any				

16.0 HIGH-SPEED PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Speed PWM" (DS70645), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices support a dedicated Pulse-Width Modulation (PWM) module with up to 12 outputs.

The high-speed PWMx module consists of the following major features:

- · Six PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and a frequency resolution of 7.14 ns
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 7.14 ns.

The high-speed PWMx module contains up to six PWM generators. Each PWMx generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADCx module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADCx module, based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 input pins that utilize PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs, which include FLT1 and FLT2. The inputs are remappable using the PPS feature. FLT3 is available on 44-pin, 64-pin and 100-pin packages; FLT4 through FLT8 are available on specific pins on 64-pin and 100-pin packages, and FLT32, which has been implemented with Class B safety features, and is available on a fixed pin on all devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled high externally or the internal pull-up resistor in the CNPUx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCONx<1:0>), regardless of the state of FLT32.

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator # bits 11111 = Fault 32 (default) 11110 = Reserved • • • • • • • • • • • • •
	00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1
bit 2	FLTPOL: Fault Polarity for PWMx Generator # bit ⁽¹⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator # bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_		PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Legend:		HS = Hardware		C = Clearable			
R = Readable		W = Writable b	bit		nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-14	Unimplome	ntad. Dood oo '	,				
bit 13	-	nted: Read as '(nnara Statua hi		
DIL IO		Position Counter IT ≥ QEIxGEC	er Greater i Na		npare Status DI	ι	
		IT < QEIXGEC					
bit 12	PCHEQIEN:	Position Counter	er Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt						
	0 = Interrupt				o		
bit 11		Position Counter $T \leq QEIxLEC$	er Less Than o	r Equal Compa	are Status bit		
		$T \ge QEIXLEC$					
bit 10	PCLEQIEN:	Position Counte	er Less Than o	r Equal Compa	re Interrupt En	able bit	
	1 = Interrupt						
	0 = Interrupt						
bit 9		Position Counter	er Overflow Sta	atus bit			
		has occurred	d				
bit 8		Position Counte		errupt Enable b	bit		
	1 = Interrupt			I			
	0 = Interrupt					<i></i>	
bit 7		sition Counter (H	÷.	ation Process	Complete Statu	us bit ⁽¹⁾	
		IT was reinitializ					
bit 6		IT was not reinit sition Counter (H		ation Process	Complete inter	runt Enable bit	
DILO	1 = Interrupt	-	oming) mitianz	auoniniocess			
	0 = Interrupt						
bit 5	VELOVIRQ:	Velocity Counter	r Overflow Sta	tus bit			
		has occurred					
		low has occurre			.,		
bit 4		Velocity Counte	r Overflow Inte	errupt Enable b	It		
	1 = Interrupt 0 = Interrupt						
bit 3	-	atus Flag for Ho	me Event Stat	us bit			
		ent has occurre					
	0 = No home	e event has occu	irred				

REGISTER 17-3: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

REGISTER 17-6: POSxHLD: POSITION COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **POSHLD<15:0>:** Holding Register for Reading and Writing POSxCNT bits

REGISTER 17-7: VELxCNT: VELOCITY COUNTER x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			VELC	NT<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			VELC	NT<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
L								

bit 15-0 VELCNT<15:0>: Velocity Counter x bits

NOTES:

22.1 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG
pit 15						L	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
pit 7							bit (
o er o ro d i							
-egend:	, hit	W - Writchlo h			aantad hit raad	aa '0'	
R = Readable n = Value at		W = Writable b '1' = Bit is set	It	0 = Onimplen	nented bit, read	x = Bit is unkn	
n = value at	PUR	I = DILIS SEL			areu		JWII
oit 15		TMU Enable bit					
	1 = Module						
	0 = Module						
oit 14	Unimpleme	nted: Read as '0'					
oit 13	CTMUSIDL:	CTMU Stop in Id	le Mode bit				
		nues module ope		device enters lo	lle mode		
	0 = Continue	es module operat	ion in Idle mo	ode			
pit 12	TGEN: Time	Generation Enab	ole bit				
		edge delay gene s edge delay gene					
pit 11		ge Enable bit					
	1 = Hardwai	re modules are us	sed to trigger	edges (TMRx,	CTEDx, etc.)		
	0 = Software	e is used to trigge	r edges (mar	nual set of EDG	SXSTAT)		
pit 10	EDGSEQEN	: Edge Sequence	e Enable bit				
		event must occur		2 event can oc	cur		
	-	e sequence is nee		(1)			
bit 9		nalog Current Sou					
	•	current source ou current source ou					
oit 8	-	Cx Trigger Contr		Janaca			
		riggers ADCx sta		n			
		loes not trigger A					
oit 7-0		nted: Read as '0'					
				n n nito n i n n n t	the meetic all the state		
		ile Sample-and-H on cycles. Any sc					

sample/conversion cycles. Any software using the ADCx as part of a capacitance measurement must discharge the ADCx capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADCx must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

CM4CON: OP AMP/COMPARATOR 4 CONTROL REGISTER (CONTINUED) REGISTER 26-3: EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽²⁾ bit 7-6 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output. 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output. If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output. 00 = Trigger/event/interrupt generation is disabled Unimplemented: Read as '0' bit 5 CREF: Comparator Reference Select bit (VIN+ input)⁽¹⁾ bit 4 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to C4IN1+ pin bit 3-2 Unimplemented: Read as '0' CCH<1:0>: Comparator Channel Select bits⁽¹⁾ bit 1-0 11 = VIN- input of comparator connects to OA3/AN6 10 = VIN- input of comparator connects to OA2/AN0 01 = VIN- input of comparator connects to OA1/AN3 00 = VIN- input of comparator connects to C4IN1-Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>). NOTES:

27.3 RTCC Registers

REGISTER 27-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0			
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0			
bit 7							bit (
Legend:										
R = Readable		W = Writable	bit	•	nented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
h:+ 45		C Enable bit ⁽²⁾								
bit 15		odule is enable								
		odule is disable								
bit 14	Unimplemen	ted: Read as ')'							
bit 13	RTCWREN:	RTCC Value Re	egister Write E	Enable bit						
	1 = RTCVAL register can be written to by the user application									
	0 = RTCVAL register is locked out from being written to by the user application									
bit 12	RTCSYNC: RTCC Value Register Read Synchronization bit									
	 1 = A rollover is about to occur in 32 clock edges (approximately 1 ms) 0 = A rollover will not occur 									
bit 11	HALFSEC: Half-Second Status bit ⁽³⁾									
DIT II	1 = Second half period of a second									
	0 = First half period of a second									
bit 10	RTCOE: RTCC Output Enable bit									
	1 = RTCC output is enabled									
	0 = RTCC output is disabled									
bit 9-8	RTCPTR<1:0>: RTCC Value Register Pointer bits Points to the corresponding RTCC Value register when reading the RTCVAL register; the									
		e correspondii)> value decren								
bit 7-0	CAL<7:0>: RTCC Drift Calibration bits									
	01111111 = Maximum positive adjustment; adds 508 RTCC clock pulses every one minute									
	•									
	•									
	00000001 = Minimum positive adjustment; adds 4 RTCC clock pulses every one minute									
	00000000 = No adjustment 1111111 = Minimum negative adjustment; subtracts 4 RTCC clock pulses every one minute									
	•	immuni nega	ave aujusuille	ni, sudi acis 4 i		ises every offe	minute			
	•									
	•									
		Maximum nega	e							

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

REGISTER 27-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x R/W-x		R/W-x	R/W-x	R/W-x
—	– – – MTHTEN0 MTHONE3		MTHONE2 MTHONE1		MTHONE0		
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x R/W-x R/W-x		R/W-x	R/W-x	R/W-x
—	– – DAYTEN1 DAYTEN0 DAYONE3		DAYONE2 DAYONE1		DAYONE0		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.
- bit 11-8 **MTHONE<3:0>:** Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions				Conditions
DO10 Vol		Output Low Voltage 4x Sink Driver Pins ⁽¹⁾	—		0.4	V	$ \begin{array}{l} V{\rm DD} = 3.3V, \\ {\rm IOL} \le 6 \mbox{ mA}, \ -40^{\circ}{\rm C} \le {\rm TA} \le +85^{\circ}{\rm C}, \\ {\rm IOL} \le 5 \mbox{ mA}, \ +85^{\circ}{\rm C} < {\rm TA} \le +125^{\circ}{\rm C} \end{array} $
		Output Low Voltage 8x Sink Driver Pins ⁽²⁾	_		0.4	V	
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽¹⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage 8x Source Driver Pins ⁽²⁾	2.4		—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
DO20A	Voh1	 OH1 Output High Voltage 4x Source Driver Pins⁽¹⁾ 	1.5	_	_	V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			2.0	_	_		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0				$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage 8x Source Driver Pins ⁽²⁾	1.5		_	V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			2.0		_		$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0	_	—		$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$

TABLE 33-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3>
 For 64-pin devices: RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7>
 For 100-pin devices: RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 33-12: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industria} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.7	—	2.95	V	V _{DD} (Note 2, Note 3)
PO10	VPOR	POR Event on VDD Transition High-to-Low	1.75	—	1.95	V	(Note 2)

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The VBOR specification is relative to VDD.

3: The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized.

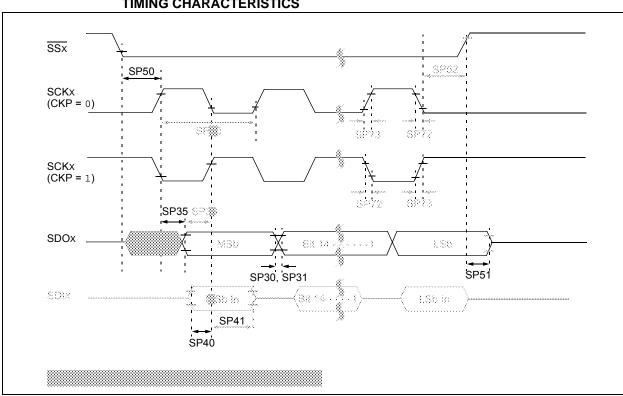


FIGURE 33-21: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

NOTES: