

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm710-h-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/ 7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Program Memory" (DS70613), which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGM3XX/6XX/7XX family architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGM3XX/6XX/7XX devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.7 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-3.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP128GM3XX/6XX/7XX DEVICES⁽¹⁾

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WF	REG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000		W4 x										xxxx					
W5	000A		W5 x										xxxx					
W6	000C		W6 x											xxxx				
W7	000E		W7 x											xxxx				
W8	0010		W8 x											xxxx				
W9	0012								W9									xxxx
W10	0014								W10)								xxxx
W11	0016								W11									xxxx
W12	0018								W12	2								xxxx
W13	001A								W13	}								xxxx
W14	001C								W14	ļ								xxxx
W15	001E								W15	5								xxxx
SPLIM	0020								SPLI	М								0000
ACCAL	0022								ACCA	AL.								0000
ACCAH	0024								ACCA	λH								0000
ACCAU	0026			Si	gn Extensio	n of ACCA<	:39>						AC	CAU				0000
ACCBL	0028								ACCE	BL								0000
ACCBH	002A								ACCE	зн								0000
ACCBU	002C			Si	gn Extensio	n of ACCB<	:39>						AC	CBU				0000
PCL	002E		_				Pr	ogram Cour	nter Low Wo	ord Register	_						—	0000
PCH	0030	_	—	—	—	_	_	—	_	_		Pr	ogram Co	unter High V	Vord Regist	er		0000
DSRPAG	0032	_	_	_	_	_	_				Data S	pace Read	l Page Reg	gister				0001
DSWPAG	0034	_	_	_	_	_	_	_			[Data Space	Write Pag	ge Register				0001
RCOUNT	0036							REPH	EAT LOOP CO	ount Registe	er							0000
DCOUNT	0038	DCOUNT<15:0>							0000									
DOSTARTL	003A	DOSTARTL<15:1> – 0							0000									
DOSTARTH	003C	—	—	_	_		_	_	_	—	_			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DO	ENDL<15:1	>		-					—	0000
DOENDH	0040			_										DOEND	0H<5:0>			0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000689D-page 46

			01120															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Tin	ner1 Registe	er							0000
PR1	0102								Peri	iod Register	· 1							FFFF
T1CON	0104	TON		TSIDL	_	_		_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106				•			•	Tin	ner2 Registe	er				•	•	•	0000
TMR3HLD	0108						Tim	er3 Holdir	ng Register	r (For 32-bit	timer opera	tions only)						xxxx
TMR3	010A								Tin	ner3 Registe	er							0000
PR2	010C								Per	iod Register	2							FFFF
PR3	010E		Period Register 3									FFFF						
T2CON	0110	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000
TMR4	0114								Tin	ner4 Registe	er							0000
TMR5HLD	0116		Timer5 Holding Register (For 32-bit timer operations only)										xxxx					
TMR5	0118		Timer5 Register										0000					
PR4	011A								Per	iod Register	4							FFFF
PR5	011C								Per	iod Register	5							FFFF
T4CON	011E	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T5CON	0120	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000
TMR6	0122								Tin	ner6 Registe	er							0000
TMR7HLD	0124						Tim	er7 Holdir	ng Register	r (For 32-bit	timer opera	tions only)						xxxx
TMR7	0126								Tin	ner7 Registe	er							0000
PR6	0128								Per	iod Register	6							FFFF
PR7	012A								Per	iod Register	7							FFFF
T6CON	012C	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T7CON	012E	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR8	0130								Tin	ner8 Registe	er							0000
TMR9HLD	0132						Tim	er9 Holdir	ng Register	r (For 32-bit	timer opera	tions only)						xxxx
TMR9	0134								Tin	ner9 Registe	er							0000
PR8	0136								Per	iod Register	8							FFFF
PR9	0138								Peri	iod Register	9							FFFF
T8CON	013A	TON	—	TSIDL	—	_	_	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T9CON	013C	TON	_	TSIDL	_			_	—	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

dsPIC33EPXXXGM3XX/6XX/7XX

TABLE 4-4: TIMERS REGISTER MAP

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							Se	e definition v	vhen WIN =	×							
C2RXFUL1	0520		RXFUL<15:0> 0000										0000					
C2RXFUL2	0522		RXFUL<31:16> 0000										0000					
C2RXOVF1	0528		RXOVF<15:0> 0(0000					
C2RXOVF2	052A								RXOVF<	<31:16>								0000
C2TR01CON	0530	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C2TR23CON	0532	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C2TR45CON	0534	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C2TR67CON	0536	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	xxxx
C2RXD	0540		CAN2 Receive Data Word Register										xxxx					
C2TXD	0542		CAN2 Transmit Data Word Register xxxx															

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator" (DS70580), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this

document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

© 2013-2014 Microchip Technology Inc.

mode is used with a doze ratio of 1:2 or lower.

3:

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15			•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PENH: PWMx	xH Output Pin o odule controls t	Ownership bit the PWMxH p	in			
bit 14			ie PVVIVIXH pir	1			
Dit 14	1 = PWMx mo 0 = GPIO mo	odule controls t dule controls th	the PWMxL pine PWMxL pine	n I			
bit 13	POLH: PWM	xH Output Pin	Polarity bit				
	1 = PWMxH p 0 = PWMxH p	oin is active-low oin is active-hig	v Jh				
bit 12	POLL: PWM>	<l f<="" output="" pin="" td=""><td>Polarity bit</td><td></td><td></td><td></td><td></td></l>	Polarity bit				
	1 = PWMxL p 0 = PWMxL p	in is active-low in is active-hig	/ h				
bit 11-10	PMOD<1:0>:	PWMx # I/O P	in Mode bits ⁽¹)			
	11 = PWMx I/ 10 = PWMx I/ 01 = PWMx I/ 00 = PWMx I/	/O pin pair is in /O pin pair is in /O pin pair is in /O pin pair is in	the True Inde Push-Pull Ou Redundant C Complement	ependent Outpu Itput mode Output mode arv Output mode	ut mode de		
bit 9	OVRENH: OV	verride Enable	for PWMxH P	in bit			
	1 = OVRDAT∙ 0 = PWMx ge	<1> controls th enerator control	e output on th Is the PWMxH	e PWMxH pin I pin			
bit 8	OVRENL: Ov	erride Enable f	for PWMxL Pi	n bit			
	1 = OVRDAT 0 = PWMx ge	<0> controls th enerator control	e output on th ls the PWMxL	e PWMxL pin pin			
bit 7-6	OVRDAT<1:0 If OVERENH If OVERENL	Description: Description (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	VMxH, PWMxl s driven to the driven to the	L Pins if Overri state specified state specified	de is Enabled b by OVRDAT< by OVRDAT<0	its 1>. >.	
bit 5-4	FLTDAT<1:0	>: Data for PW	MxH and PWI	MxL Pins if FLT	MOD is Enable	ed bits	
	If Fault is activity of the section	ve, PWMxH is ve, PWMxL is o	driven to the s driven to the s	state specified	by FLTDAT<1> by FLTDAT<0>.		
bit 3-2	CLDAT<1:0>	: Data for PWN	/IxH and PWIV	IxL Pins if CLN	IOD is Enabled	bits	
	If current limit If current limit	is active, PWN is active, PWN	/IxH is driven f /IxL is driven t	to the state spe o the state spe	ecified by CLDA cified by CLDA	.T<1>. T<0>.	
Note 1: The	ese bits should	not be changed	d after the PW	Mx module is o	enabled (PTEN	= 1).	

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-23: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER x

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	—	_		LEB<11:8>						
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			LEB	<7:0>							
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown							

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware sets or clears after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware sets when I2CxRCV is written with a received byte. Hardware clears when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.

REGISTER 21-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15	·						bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	_	EXIDE		EID17	EID16	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, reac	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unkr	nown		
bit 15-5	SID<10:0>: S	tandard Identif	ier bits					
	1 = Message 0 = Message	address bit, SI address bit, SI	Dx, must be ': Dx, must be 'i	1' to match filte 0' to match filte	er er			
bit 4	Unimplemen	ted: Read as '	D'					
bit 3	EXIDE: Exten	ded Identifier E	Enable bit					
	If MIDE = 1:							
	1 = Matches of	only messages	with Extende	d Identifier add	lresses			
	0 = Matches o	only messages	with Standard	d Identifier add	resses			
	$\frac{\text{If MIDE} = 0}{\text{Ignarea}}$							
h # 0		E DIL. La de Da adras (~ '					
	Unimplemen							
DIT 1-U	EID<1/:16>: Extended Identifier bits							
	\perp = Message address bit, EIDx, must be \perp to match filter 0 = Message address bit, EIDx, must be '0' to match filter							
			DA, must be		1			

REGISTER 21-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—	—	—	—	—	—	—	ADDMAEN		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	—	—	DMABL2	DMABL1	DMABL0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15-9	Unimplemen	ted: Read as '0)'						
bit 8	ADDMAEN: /	ADCx DMA Ena	able bit						
	1 = Conversio	on results are st	tored in the AD	C1BUF0 regi	ster for transfer	to RAM using	DMA vill not be used		
bit 7-3	Unimplemen	ted: Read as '()'			-giotoro, 211, 11			
bit 2-0	DMABL<2:0	Selects Numl	per of DMA Bu	ffer Locations	per Analog Inp	ut bits			
	 111 = Allocates 128 words of buffer to each analog input 110 = Allocates 64 words of buffer to each analog input 101 = Allocates 32 words of buffer to each analog input 100 = Allocates 16 words of buffer to each analog input 								

REGISTER 23-4: ADxCON4: ADCx CONTROL REGISTER 4

- 011 =Allocates 16 words of buffer to each analog input
- 010 =Allocates 8 words of buffer to each analog input 010 = Allocates 4 words of buffer to each analog input
- 001 =Allocates 2 words of buffer to each analog input
- 000 =Allocates 1 word of buffer to each analog input

REGISTER 23-5:	ADxCHS123: ADCx INPUT CHANNEL 1,	2, 3 SELECT REGISTER
----------------	----------------------------------	----------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	—	CH123SB2	CH123SB1	CH123NB1	CH123NB0	CH123SB0				
bit 15						· · ·	bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	CH123SA2	CH123SA1	CH123NA1	CH123NA0	CH123SA0				
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own				
 bit 15-13 Unimplemented: Read as '0' bit 12-11 CH123SB<2:1>: Channels 1, 2, 3 Positive Input Select for Sample B bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 											
bit 10-9 bit 8	CH123NB<1 11 = CH1 ne 10 = CH1 ne 0x = CH1, C CH123SB0:	:0>: Channels gative input is a gative input is a H2, CH3 negat Channels 1, 2,	1, 2, 3 Negativ AN9, CH2 neg AN6, CH2 neg ive input is VR 3 Positive Inpu	ve Input Selec ative input is / ative input is / EFL ⁽¹⁾ ut Select for S	t for Sample B AN10, CH3 neg AN7, CH3 nega ample B bit	bits pative input is Al ative input is AN	N11 8				
	See bits<12:	11> for bit seled	ctions.								
bit 7-5	Unimplemer	nted: Read as '	0'								
bit 4-3	CH123SA<2	:1>: Channels	1, 2, 3 Positive	e Input Select	for Sample A b	its					
	1xx = CH1 p input i 011 = CH1 p is AN2 010 = CH1 p is AN6 001 = CH1 p 000 = CH1 p	 CH123SA<2:1>: Channels 1, 2, 3 Positive Input Select for Sample A bits 1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5) 010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3) 011 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 									
bit 2-1	CH123NA<1 11 = CH1 ne 10 = CH1 ne	: 0>: Channels gative input is a gative input is a	1, 2, 3 Negativ AN9, CH2 neg AN6, CH2 neg	ve Input Selec ative input is v ative input is v	t for Sample A AN10, CH3 neg AN7, CH3 nega	bits pative input is Al ative input is AN	N11 8				
	0x = CH1, C	H2, CH3 negat	ive input is VR	EFL							
bit 0	CH123SA0:	Channels 1, 2,	3 Positive Inp	ut Select for S	ample A bit						
	See bits<4:3	> for the bit selected	ections.								
Note 1:	The negative inpu	ut to VREFL hap	pens only whe	en VCFG<2:0>	= 2 or 3 in the	ADxCON2 regi	ster. When				

Ote 1: The negative input to VREFL happens only when VCFG<2:0> = 2 or 3 in the ADXCON2 register VCFG<2:0> = 0 or 1, this negative input is internally routed to AVss.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB		CH0SB5 ^(1,4,5)	CH0SB4 ^(1,5)	CH0SB3 ^(1,5)	CH0SB2 ^(1,5)	CH0SB1 ^(1,5)	CH0SB0 ^(1,5)			
bit 15							bit 8			
	11.0	DAMO		DAMA	DAMA	DAMA	DAMA			
	0-0	R/VV-U		R/W-U	R/W-U	R/W-U	R/W-U			
bit 7		CHUSAS	CHUSA4	CHUSAS	CHUSAZ	CHUSAN	bit 0			
							bit 0			
Legend:										
R = Read	able bit	W = Writable bi	t	U = Unimplem	ented bit, read a	as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own			
bit 15 CHONB: Channel 0 Negative Input Select for Sample MUXB bit										
	1 = Channel 0 =	el 0 negative inpu el 0 negative inpu	It is ANTY							
bit 14	Unimplem	ented: Read as '	0'							
bit 13-8	CH0SB<5:	0>: Channel 0 Po	ositive Input Se	elect for Sample	MUXB bits ^{(1,4,4}	5)				
	111111 =	Channel 0 positiv	e input is (AN6	63) unconnected	b					
	111110 = 111101 =	Channel 0 positiv Channel 0 positiv	e input is (AN6 e input is (AN6	62) the CTMU te 61) reserved	emperature volta	age				
	•			,						
	•									
	•	Channel 0 positiv	e input is (ANF	50) reserved						
	110010 =	Channel 0 positiv	e input is AN4	9						
	110000 =	Channel 0 positiv	e input is AN4	8						
	101111 =	Channel 0 positiv	e input is AN4	7						
	101110 =	Channel 0 positiv	e input is AN4	6						
	•									
	•									
	011010 =	Channel 0 positiv	e input is AN2	6		`				
	011001 =	Channel 0 positiv	e input is AN2	5 or Op Amp 5	output voltage ⁽²)				
	•	Channel 0 positiv	e input is Anz	4						
	•									
	•									
	000111 =	Channel 0 positiv	e input is AN7							
	000110 =	Channel 0 positiv	e input is AN6	or Op Amp 3 o	utput voltage					
	000100 =	Channel 0 positiv	e input is AN4							
	000011 =	Channel 0 positiv	e input is AN3	or Op Amp 1 o	utput voltage ⁽²⁾					
	000010 =	Channel 0 positiv	e input is AN2							
	000001 =	Channel 0 positiv	e input is AN1	or On Amn 2 o	utput voltage(2)					
Note 1:	AN0 through And the determine how	AN7 are repurpose w enabling a partic	ed when compa cular op amp o	arator and op an r comparator affe	np functionality a ects selection ch	ire enabled. See ioices for Chann	e ⊢ıgure 23-1 to els 1, 2 and 3.			
2:	If the op amp	is selected (OPM	10DF bit (CMx	(CON<10>) = 1), the OAx input	is used: otherw	ise, the ANx			

REGISTER 23-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER⁽³⁾

- 2: If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
- **3:** See the **"Pin Diagrams**" section for the available analog channels for each device.
- 4: Analog input selections for ADC1 are shown here. AN32-AN63 selections are not available for ADC2. The CH0SB5 and CH0SA5 bits are 'Reserved' for ADC2 and should be programmed to '0'.
- **5:** Analog inputs, AN32-AN49, are available only when the ADCx is working in 10-bit mode.

25.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Peripheral Trigger Generator (PTG)" (DS70669), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

25.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex, high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "steps", that the user writes to the PTG Queue register (PTGQUE0-PTQUE15), which performs operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple Clock Sources
- Two 16-Bit General Purpose Timers
- Two 16-Bit General Limit Counters
- Configurable for Rising or Falling Edge Triggering
- Generates Processor Interrupts to Include:
 - Four configurable processor interrupts
 - Interrupt on a step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to Receive Trigger Signals from these Peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to Trigger or Synchronize to these Peripherals:
- Watchdog Timer
- Output Compare
- Input Capture
- ADC
- PWM
- Op Amp/Comparator

REGISTER 25-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGT0	_IM<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGT0	LIM<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits

General purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	M<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTGT1LIM<7:0>										
bit 7										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits General purpose Timer1 Limit register (effective only with a PTGT1 Step command).
- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 26-5: **CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)**

- bit 3 ABEN: AND Gate B Input Enable bit
 - 1 = MBI is connected to the AND gate
 - 0 = MBI is not connected to the AND gate
- bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to the AND gate
- 0 = Inverted MBI is not connected to the AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to the AND gate 0 = MAI is not connected to the AND gate bit 0
 - AANEN: AND Gate A Input Inverted Enable bit
 - 1 = Inverted MAI is connected to the AND gate
 - 0 = Inverted MAI is not connected to the AND gate

DC CHARACT	ERISTICS		Standard O (unless oth Operating te	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Тур. ⁽²⁾	Max.	Units	Units Conditions					
Operating Cu	rrent (IDD) ⁽¹⁾								
DC20d	6.0	18.0	mA	-40°C					
DC20a	6.0	18.0	mA	+25°C	3 3//				
DC20b	6.0	18.0	mA	+85°C	3.3V	10 1011-5			
DC20c	6.0	18.0	mA	+125°C					
DC21d	11.0	20.0	mA	-40°C					
DC21a	11.0	20.0	mA	+25°C	2 2)/				
DC21b	11.0	20.0	mA	+85°C	3.3V	20 1011-3			
DC21c	11.0	20.0	mA	+125°C					
DC22d	17.0	30.0	mA	-40°C					
DC22a	17.0	30.0	mA	+25°C	2 2)/				
DC22b	17.0	30.0	mA	+85°C	3.3V	40 101173			
DC22c	17.0	30.0	mA	+125°C					
DC23d	25.0	50.0	mA	-40°C					
DC23a	25.0	50.0	mA	+25°C	2 2)/				
DC23b	25.0	50.0	mA	+85°C	3.3V				
DC23c	25.0	50.0	mA	+125°C					
DC24d	30.0	60.0	mA	-40°C					
DC24a	30.0	60.0	mA	+25°C	3.3V 70 MIPS				
DC24b	30.0	60.0	mA	+85°C					

TABLE 33-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing
 - while(1)
 - {
 - NOP(); }
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CHA	AC CHARACTERISTICS			rating C wise stat perature	onditions: 3.0V to 3.6V ted) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10 32.4	 32.768	10 25 33.1	MHz MHz kHz	XT HS SOSC	
OS20	Tosc Tosc = 1/Fosc		8.33	_	DC	ns	TA = +125°C	
		Tosc = 1/Fosc	7.14	—	DC	ns	TA = +85°C	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67	—	DC	ns	TA = +125°C	
			14.28		DC	ns	TA = +85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time		_	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	—	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C	
			_	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 33-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 33-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Param No.SymbolCharacteristicMin.Typ.(1)Max.Unit						Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes		
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms			
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{Fosc}}$$

$$\frac{Fosc}{\sqrt{Time Base or Communication Clock}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 33-18: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
Internal	FRC Accuracy @ FRC Fre	equency	= 7.3728	MHz ⁽¹⁾					
F20a	FRC	-1.5	0.5	+1.5	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F20b	FRC	-2	1.5	+2	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

Note 1: Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 33-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min. Typ. Max. Units Conditions					tions		
LPRC	@ 32.768 kHz								
F21a	LPRC	-15	5	+15	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
F21b	LPRC	-30	-30 10 +30 % $-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V						

^{© 2013-2014} Microchip Technology Inc.

TABLE 33-52: OP AMP/COMPARATOR SPECIFICATIONS

DC CH	DC CHARACTERISTICS			erating rwise st nperatur	Conditions (se ated) re -40°C ≤ Ta -40°C ≤ Ta	onditions (see Note 3): 3.0V to 3.6V ted) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
Compa	rator AC Ch	naracteristics							
CM10	TRESP	Response Time	—	19	—	ns	V+ input step of 100 mV, V- input held at VDD/2		
CM11	Тмс2о∨	Comparator Mode Change to Output Valid	—	—	10	μs			
Compa	rator DC Ch	naracteristics							
CM30	VOFFSET	Comparator Offset Voltage	_	±20	±75	mV			
CM31	VHYST	Input Hysteresis Voltage	—	30	—	mV			
CM32	Trise/ Tfall	Comparator Output Rise/Fall Time	—	20	—	ns	1 pF load capacitance on input		
CM33	Vgain	Open-Loop Voltage Gain	—	90	—	db			
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVDD	V			
Op Am	p AC Chara	cteristics							
CM20	SR	Slew Rate		9		V/µs	10 pF load		
CM21a	Рм	Phase Margin	_	68	—	Degree	G = 100V/V; 10 pF load		
CM22	Gм	Gain Margin	—	20	—	db	G = 100V/V; 10 pF load		
CM23a	GBW	Gain Bandwidth	—	10	—	MHz	10 pF load		
Op Am	p DC Chara	cteristics							
CM40	VCMR	Common-Mode Input Voltage Range	AVss	-	AVDD	V			
CM41	CMRR	Common-Mode Rejection Ratio	—	40	—	db	Vcm = AVdd/2		
CM42	VOFFSET	Op Amp Offset Voltage	—	±20	±70	mV			
CM43	Vgain	Open-Loop Voltage Gain	_	90	_	db			
CM44	los	Input Offset Current	—	_	—	_	See pad leakage currents in Table 33-10		
CM45	Ів	Input Bias Current	—	_	—	_	See pad leakage currents in Table 33-10		
CM46	Ιουτ	Output Current	_	—	420	μA	With minimum value of RFEEDBACK (CM48)		
CM48	RFEEDBACK	Feedback Resistance Value	8	_	_	kΩ	(Note 2)		
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	Ιουτ = 420 μΑ		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Resistances can vary by ±10% between op amps.

3: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

			Standard C)peratir	ng Condition	is (see	Note 1): 3.0V to 3.6V
AC CH	ARACTER	RISTICS	Operating to	empera	ture -40°C	< TA < +	-85°C for Industrial
			o por atting t		-40°C	\leq TA \leq +	-125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
			Device	Supply	y		
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	-	Lesser of: VDD + 0.3 or 3.6	V	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V	
			Referen	ce Inpu	its		
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVDD	V	(Note 1) VREFH = VREF+, VREFL = VREF-
AD05a			3.0	—	3.6	V	VREFH = AVDD, VREFL = AVSS = 0
AD06	VREFL	Reference Voltage Low	AVss	—	AVDD - 2.7	V	(Note 1)
AD06a			0	—	0	V	VREFH = AVDD, VREFL = AVSS = 0
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	VREF = VREFH – VREFL
AD08	IREF	Current Drain	_	_	10 600	μΑ μΑ	ADC off ADC on
AD09	IAD	Operating Current		5	_	mA mA	ADC operating in 10-bit mode (Note 1) ADC operating in 12-bit mode
				2		1100	(Note 1)
	1	l	Analo	g Input			
AD12	VINH	Input Voltage Range, Vinн	VINL	_	Vrefh	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input
AD13	VINL	Input Voltage Range, VinL	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input
AD17	Rin	Recommended Impedance of Analog Voltage Source	-	_	200	Ω	Impedance to achieve maximum performance of ADC

TABLE 33-56: ADCx MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.