

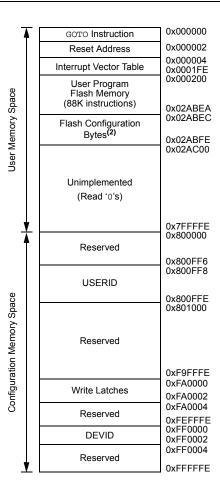
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm710-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note 1: Memory areas are not shown to scale.

2: On Reset, these bits are automatically copied into the device Configuration Shadow registers.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EPXXXGM3XX/6XX/7XX Product Family" section for the page sizes of each device.

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

For more information on erasing and programming Flash memory, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Flash Programming"** (DS70609).

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time), in Table 33-13.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. Programmers can also program a row of data (64 instruction words/ 192 bytes) at a time using the row programming feature present in these devices. For row programming, the source data is fetched directly from the data memory (RAM) on these devices. Two new registers have been provided to point to the RAM location where the source data resides. The page that has the row to be programmed must first be erased before the programming operation.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Flash Programming"** (DS70609) for details and code examples on programming using RTSP.

5.4 Control Registers

Six SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU, NVMSRCADRL and NVMSRCADRH.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

The NVMSRCADRH and NVMSRCADRL registers are used to hold the source address of the data in the data memory that needs to be written to Flash memory.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 - 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
 - 0 = PWMxH and PWMxL pins are mapped to their respective pins
- bit 0 OSYNC: Output Override Synchronization bit
 - 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- **Note 1:** These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-20: TRIGX: PWMX PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADCx module.

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_		PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Legend:		HS = Hardware		C = Clearable			
R = Readable		W = Writable b	bit		nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-14	Unimplome	ntad. Dood oo '	,				
bit 13	-	nted: Read as '(n or Fauld Con	nnara Statua hi		
DIL IO		Position Counter IT ≥ QEIxGEC	er Greater i Na		npare Status DI	ι	
		IT < QEIXGEC					
bit 12	PCHEQIEN:	Position Counter	er Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt						
	0 = Interrupt				o		
bit 11		Position Counter $T \leq QEIxLEC$	er Less Than o	r Equal Compa	are Status bit		
		$T \ge QEIXLEC$					
bit 10	PCLEQIEN:	Position Counte	er Less Than o	r Equal Compa	re Interrupt En	able bit	
	1 = Interrupt						
	0 = Interrupt						
bit 9		Position Counter	er Overflow Sta	atus bit			
		has occurred	d				
bit 8		Position Counte		errupt Enable b	bit		
	1 = Interrupt			I			
	0 = Interrupt					<i></i>	
bit 7		sition Counter (H	÷.	ation Process	Complete Statu	us bit ⁽¹⁾	
		IT was reinitializ					
bit 6		IT was not reinit sition Counter (H		ation Process	Complete inter	runt Enable bit	
DILO	1 = Interrupt	-	oming) mitianz	auoniniocess			
	0 = Interrupt						
bit 5	VELOVIRQ:	Velocity Counter	r Overflow Sta	tus bit			
		has occurred					
		low has occurre			.,		
bit 4		Velocity Counte	r Overflow Inte	errupt Enable b	It		
	1 = Interrupt 0 = Interrupt						
bit 3	-	atus Flag for Ho	me Event Stat	us bit			
		ent has occurre					
	0 = No home	e event has occu	irred				

REGISTER 17-3: QEIxSTAT: QEIx STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

REGISTER 17-17: INTxTMRH: INTERVAL TIMERx HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMERx LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTTM	IR<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTT	/IR<7:0>			
						bit 0
bit	W = Writable I	bit	U = Unimpler	nented bit, rea	d as '0'	
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	R/W-0	R/W-0 R/W-0	INTTM R/W-0 R/W-0 R/W-0 INTTM Dit W = Writable bit	INTTMR<15:8> R/W-0 R/W-0 R/W-0 INTTMR<7:0> INTTMR<7:0>	INTTMR<15:8> R/W-0 R/W-0 R/W-0 INTTMR<7:0>	INTTMR<15:8> R/W-0 R/W-0 R/W-0 R/W-0 INTTMR<7:0> Dit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

21.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EPXXXGM6XX/7XX DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Controller Area Network (ECAN™)" (DS70353), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGM6XX/7XX devices contain two CAN modules.

The CAN module is a communication controller, implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0-8 Bytes of Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- · Low-Power Sleep and Idle modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_		ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0
		0		1			
Legend: R = Readable	b :4		-		n to clear the bit		
-n = Value at F		W = Writable '1' = Bit is set		0 = Unimple 0' = Bit is cle	mented bit, read	x = Bit is unki	
	-OK	I – DILIS SEL			areu	x – Dit is uliki	IOWIT
bit 15-14	Unimplemen	ted: Read as '	י)				
bit 13	-	mitter in Error S		bit			
		er is in Bus Off					
	0 = Transmitte	er is not in Bus	Off state				
bit 12	TXBP: Transr	mitter in Error S	State Bus Pas	sive bit			
		er is in Bus Pa					
L:1 44		er is not in Bus					
bit 11		ver in Error Sta is in Bus Passi		/e dit			
		is not in Bus Passi					
bit 10		nsmitter in Erro		na bit			
		er is in Error W		5			
	0 = Transmitte	er is not in Erro	or Warning sta	ite			
bit 9	RXWAR: Rec	eiver in Error S	State Warning	bit			
		is in Error War					
h # 0		is not in Error \	•	Ctata Manaina	b :4		
bit 8		nsmitter or Rec er or receiver is		•	DIT		
		er or receiver is					
bit 7		Message Inter		5			
		request has occ					
	•	request has not					
bit 6		Wake-up Activi	, ,	ag bit			
		request has occ					
hit E	-	request has not		ouroop in CvIN	TE<12.95 ragio	tor)	
bit 5		request has occ		Jurces in Cxin	TF<13:8> regis	ler)	
		request has not					
bit 4	•	ted: Read as '					
bit 3	-	Almost Full In		it			
	1 = Interrupt r	equest has occ	curred				
		request has not					
bit 2		Buffer Overflow	•	ig bit			
		request has occ					
	0 = interrupt r	request has not	occurred				

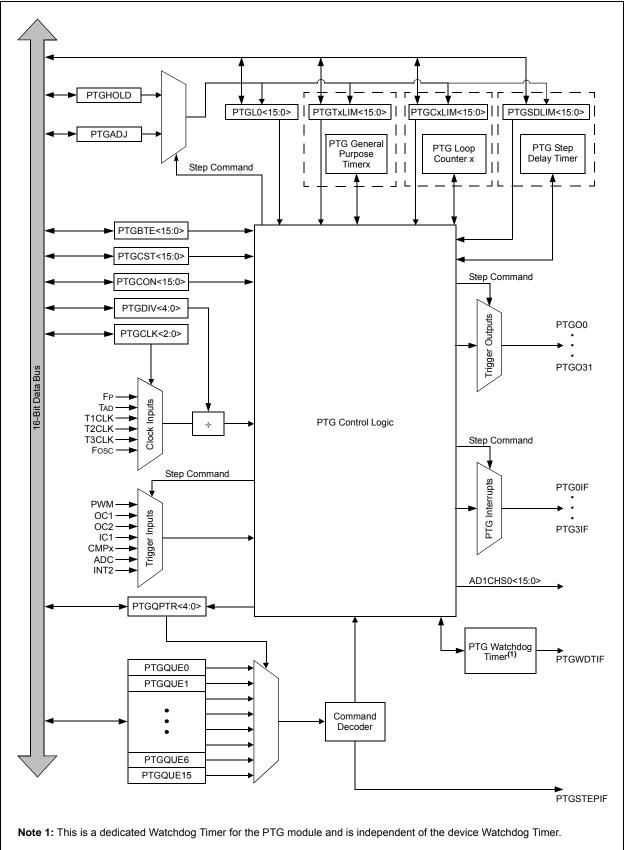
REGISTER 21-6: CXINTF: CANX INTERRUPT FLAG REGISTER

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU)" (DS70661), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- · Polarity control for each edge source
- Control of edge sequence
- Control of response to edges
- · Precise time measurement resolution of 1 ns
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

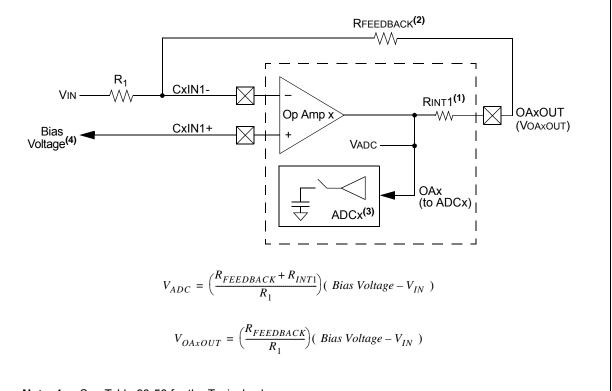

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

r-0	r-0	r-0	r-0	R-0	R-0	R-0	R-0
r	r	r	r	SLOT3	SLOT2	SLOT1	SLOT0
bit 15							bit
r-0	r-0	r-0	r-0	R-0	R-0	R-0	R-0
r	r	r	r	ROV	RFUL	TUNF	TMPTY
bit 7							bit
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkr	nown
	1111 = Slot 1 • • • • • • • • • • • • • • • • • • •	is currently ac is currently ac is currently ac	ctive ctive				
bit 7-4	Reserved: Re						
bit 3 bit 2	0 = A receive RFUL: Receiv 1 = New data	overflow has o overflow has r ve Buffer Full S is available in	occurred for a not occurred Status bit the Receive i	t least one Rec registers	eive register		
bit 1	0 = The Rece TUNF: Transr 1 = A transmit 0 = A transmit	nit Buffer Under t underflow ha	erflow Status s occurred for	r at least one Tr	ransmit register	r	
bit 0	TMPTY: Trans 1 = The Trans 0 = The Trans	smit Buffer Err smit registers a	ipty Status bit are empty	-			

REGISTER 24-4: DCISTAT: DCI STATUS REGISTER

PTG Output Number	PTG Output Description
PTGO0	Trigger/Synchronization Source for OC1
PTGO1	Trigger/Synchronization Source for OC2
PTGO2	Trigger/Synchronization Source for OC3
PTGO3	Trigger/Synchronization Source for OC4
PTGO4	Clock Source for OC1
PTGO5	Clock Source for OC2
PTGO6	Clock Source for OC3
PTGO7	Clock Source for OC4
PTGO8	Trigger/Synchronization Source for IC1
PTGO9	Trigger/Synchronization Source for IC2
PTGO10	Trigger/Synchronization Source for IC3
PTGO11	Trigger/Synchronization Source for IC4
PTGO12	Sample Trigger for ADC
PTGO13	Sample Trigger for ADC
PTGO14	Sample Trigger for ADC
PTGO15	Sample Trigger for ADC
PTGO16	PWM Time Base Synchronous Source for PWM
PTGO17	PWM Time Base Synchronous Source for PWM
PTGO18	Mask Input Select for Op Amp/Comparator
PTGO19	Mask Input Select for Op Amp/Comparator
PTGO20	Reserved
PTGO21	Reserved
PTGO22	Reserved
PTGO23	Reserved
PTGO24	Reserved
PTGO25	Reserved
PTGO26	Reserved
PTGO27	Reserved
PTGO28	Reserved
PTGO29	Reserved
PTGO30	PTG Output to PPS Input Selection
PTGO31	PTG Output to PPS Input Selection


TABLE 25-2: PTG OUTPUT DESCRIPTIONS

26.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that are available in the dsPIC33EPXXXGM3XX/6XX/7XX devices. Configuration A (see Figure 26-5) takes advantage of the internal connection to the ADCx module to route the output of the op amp directly to the ADCx for measurement. Configuration B (see Figure 26-6) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 33-53 in **Section 33.0 "Electrical Characteristics**" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

26.1.1 OP AMP CONFIGURATION A

Figure 26-5 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADCx. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADCx module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADCx internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 33-52 in Section 33.0 "Electrical Characteristics" for the typical value of RINT1. Table 33-57 and Table 33-58 in Section 33.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADCx module in this configuration. Figure 26-5 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 26-5: OP AMP CONFIGURATION A

Note 1: See Table 33-56 for the Typical value.

- 2: See Table 33-52 for the Minimum value for the feedback resistor.
- 3: See Table 33-59 and Table 33-60 for the Minimum Sample Time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

DC CHARACT	ERISTICS			•	ns: 3.0V to 3.6V ≤ Ta ≤ +85°C for Ind ≤ Ta ≤ +125°C for E:			
Param.	Typ. ⁽²⁾	Max.	Units	Conditions				
Operating Cur	rrent (IDD) ⁽¹⁾			•				
DC20d	6.0	18.0	mA	-40°C				
DC20a	6.0	18.0	mA	+25°C	2.21/			
DC20b	6.0	18.0	mA	+85°C	- 3.3V	10 MIPS		
DC20c	6.0	18.0	mA	+125°C				
DC21d	11.0	20.0	mA	-40°C				
DC21a	11.0	20.0	mA	+25°C	- 3.3V	20 MIPS		
DC21b	11.0	20.0	mA	+85°C		20 101173		
DC21c	11.0	20.0	mA	+125°C				
DC22d	17.0	30.0	mA	-40°C				
DC22a	17.0	30.0	mA	+25°C	2.21/			
DC22b	17.0	30.0	mA	+85°C	- 3.3V	40 MIPS		
DC22c	17.0	30.0	mA	+125°C				
DC23d	25.0	50.0	mA	-40°C				
DC23a	25.0	50.0	mA	+25°C	2.21/			
DC23b	25.0	50.0	mA	+85°C	- 3.3V	60 MIPS		
DC23c	25.0	50.0	mA	+125°C				
DC24d	30.0	60.0	mA	-40°C				
DC24a	30.0	60.0	mA	+25°C	3.3V	70 MIPS		
DC24b	30.0	60.0	mA	+85°C				

TABLE 33-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- · CPU executing
- while(1)
- { NOP();
- }
- · JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

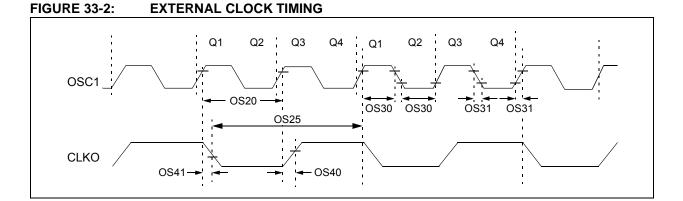
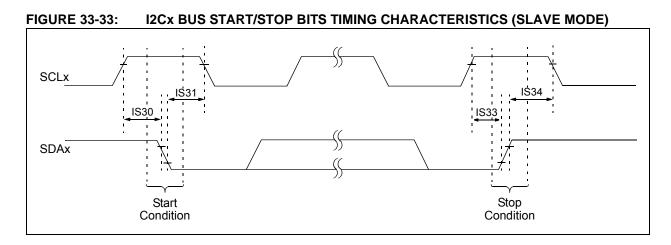

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions						
	liL	Input Leakage Current ^(1,2)							
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$Vss \le VPIN \le 5V$, Pin at high-impedance		
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$		
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$		
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C		
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$		
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
DI56		OSC1	-5	—	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$		

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

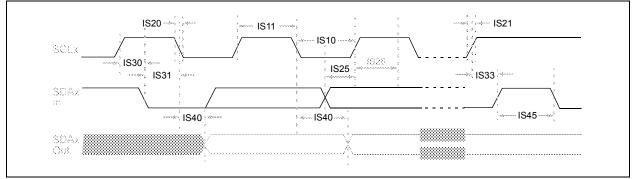
Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

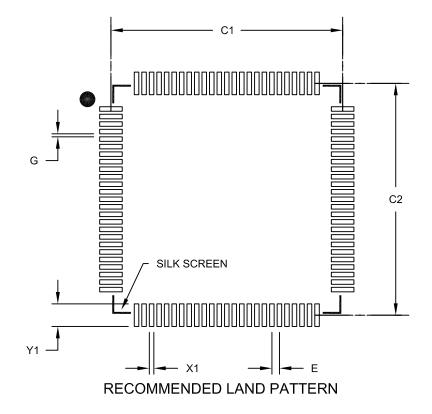


AC CHA	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	60	MHz	EC		
		Oscillator Crystal Frequency	3.5 10 32.4	 32.768	10 25 33.1	MHz MHz kHz	XT HS SOSC		
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	TA = +125°C		
		Tosc = 1/Fosc	7.14	_	DC	ns	TA = +85°C		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67		DC	ns	TA = +125°C		
			14.28		DC	ns	TA = +85°C		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	_	ns			
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	_	ns			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C		
			—	6	—	mA/V	XT, VDD = 3.3V, TA = +25°C		


TABLE 33-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.



NOTES:

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

This is the initial released version of this document.

Revision B (June 2013)

Changes to Section 5.0 "Flash Program Memory", Register 5-1. Changes to Section 6.0 "Resets", Figure 6-1. Changes to Section 26.0 "Op Amp/Comparator Module", Register 26-2. Updates to most of the tables in Section 33.0 "Electrical Characteristics". Minor text edits throughout the document.

Revision C (September 2013)

Changes to Figure 23-1. Changes to Figure 26-2. Changes to Table 30-2. Changes to Section 33.0 "Electrical Characteristics". Added Section 34.0 "High-Temperature Electrical Characteristics" to the data sheet. Minor typographical edits throughout the document.

Revision D (August 2014)

This revision incorporates the following updates:

- Sections:
 - Updated Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers", Section 8.0 "Direct Memory Access (DMA)", Section 10.3 "Doze Mode", Section 21.0 "Controller Area Network (CAN) Module (dsPIC33EPXXXGM6XX/7XX Devices Only)", Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)", Section 23.1.2 "12-Bit ADCx Configuration", Section 21.4 "CAN Message Buffers", Section 35.0 "Packaging Information"
- · Figures:
 - Updated **"Pin Diagrams"**, Figure 1-1, Figure 9-1
- · Registers:
 - Updated Register 5-1, Register 8-2, Register 21-1, Register 23-2
- · Tables:
 - Updated Table 1-1, Table 7-1, Table 8-1, Table 34-9, Table 1, Table 4-2, Table 4-3, Table 4-25, Table 4-33, Table 4-34, Table 4-39, Table 4-30, Table 4-46, Table 4-47, Table 33-16, Table 34-8