

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 70 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, QEI, SPI, UART/USART                      |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, Motor Control PWM, POR, PWM, WDT   |
| Number of I/O              | 85                                                                                |
| Program Memory Size        | 256KB (85.5K x 24)                                                                |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 32K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | -                                                                                 |
| Data Converters            | A/D 49x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 100-TQFP                                                                          |
| Supplier Device Package    | 100-TQFP (14x14)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm710t-i-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



FIGURE 4-6: DATA MEMORY MAP FOR 256-KBYTE DEVICES

|             | 0     |        |                       |                      |               |         |         |         | 011 051 |          |          |          |          |               |               |              |          |               |
|-------------|-------|--------|-----------------------|----------------------|---------------|---------|---------|---------|---------|----------|----------|----------|----------|---------------|---------------|--------------|----------|---------------|
| SFR<br>Name | Addr. | Bit 15 | Bit 14                | Bit 13               | Bit 12        | Bit 11  | Bit 10  | Bit 9   | Bit 8   | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3         | Bit 2         | Bit 1        | Bit 0    | All<br>Resets |
| INTCON1     | 08C0  | NSTDIS | OVAERR                | OVBERR               | COVAERR       | COVBERR | OVATE   | OVBTE   | COVTE   | SFTACERR | DIV0ERR  | DMACERR  | MATHERR  | ADDRERR       | STKERR        | OSCFAIL      | _        | 0000          |
| INTCON2     | 08C2  | GIE    | DISI                  | SWTRAP               | _             | _       | —       | _       | _       | _        | _        | _        | _        | _             | INT2EP        | INT1EP       | INT0EP   | 0000          |
| INTCON3     | 08C4  | _      | -                     | _                    | _             | _       | _       | _       | _       | _        | _        | DAE      | DOOVR    | _             | —             | _            | _        | 0000          |
| INTCON4     | 08C6  |        | -                     | _                    | _             | _       | _       | _       | _       | _        | _        | _        | _        | _             | _             | _            | SGHT     | 0000          |
| IFS0        | 0800  |        | DMA1IF                | AD1IF                | <b>U1TXIF</b> | U1RXIF  | SPI1IF  | SPI1EIF | T3IF    | T2IF     | OC2IF    | IC2IF    | DMA0IF   | T1IF          | OC1IF         | IC1IF        | INTOIF   | 0000          |
| IFS1        | 0802  | U2TXIF | U2RXIF                | INT2IF               | T5IF          | T4IF    | OC4IF   | OC3IF   | DMA2IF  | IC8IF    | IC7IF    | AD2IF    | INT1IF   | CNIF          | CMPIF         | MI2C1IF      | SI2C1IF  | 0000          |
| IFS2        | 0804  | T6IF   | -                     | PMPIF <sup>(1)</sup> | OC8IF         | OC7IF   | OC6IF   | OC5IF   | IC6IF   | IC5IF    | IC4IF    | IC3IF    | DMA3IF   | _             | —             | SPI2IF       | SPI2EIF  | 0000          |
| IFS3        | 0806  | FLT1IF | RTCCIF <sup>(2)</sup> | —                    | DCIIF         | DCIEIF  | QEI1IF  | PSEMIF  | _       | _        | INT4IF   | INT3IF   | T9IF     | T8IF          | MI2C2IF       | SI2C2IF      | T7IF     | 0000          |
| IFS4        | 0808  | _      | -                     | CTMUIF               | FLT4IF        | QEI2IF  | FLT3IF  | PSESMIF | _       | _        | _        | _        | _        | CRCIF         | U2EIF         | U1EIF        | FLT2IF   | 0000          |
| IFS5        | 080A  | PWM2IF | PWM1IF                | —                    | _             | SPI3IF  | SPI3EIF | U4TXIF  | U4RXIF  | U4EIF    | _        | _        | _        | <b>U3TXIF</b> | <b>U3RXIF</b> | <b>U3EIF</b> | _        | 0000          |
| IFS6        | 080C  | _      | -                     | _                    | _             | _       | _       | _       | -       | _        | _        | _        | _        | PWM6IF        | PWM5IF        | PWM4IF       | PWM3IF   | 0000          |
| IFS8        | 0810  | JTAGIF | ICDIF                 | _                    | _             | _       | _       | _       | _       | _        | _        | _        | _        | _             | —             | _            | _        | 0000          |
| IFS9        | 0812  | _      | -                     | _                    | _             | _       | _       | _       | _       | _        | PTG3IF   | PTG2IF   | PTG1IF   | PTG0IF        | PTGWDTIF      | PTGSTEPIF    | _        | 0000          |
| IEC0        | 0820  | _      | DMA1IE                | AD1IE                | U1TXIE        | U1RXIE  | SPI1IE  | SPI1EIE | T3IE    | T2IE     | OC2IE    | IC2IE    | DMA0IE   | T1IE          | OC1IE         | IC1IE        | INT0IE   | 0000          |
| IEC1        | 0822  | U2TXIE | U2RXIE                | INT2IE               | T5IE          | T4IE    | OC4IE   | OC3IE   | DMA2IE  | IC8IE    | IC7IE    | AD2IE    | INT1IE   | CNIE          | CMPIE         | MI2C1IE      | SI2C1IE  | 0000          |
| IEC2        | 0824  | T6IE   | _                     | PMPIE <sup>(1)</sup> | OC8IE         | OC7IE   | OC6IE   | OC5IE   | IC6IE   | IC5IE    | IC4IE    | IC3IE    | DMA3IE   | _             | —             | SPI2IE       | SPI2EIE  | 0000          |
| IEC3        | 0826  | FLT1IE | RTCCIE <sup>(2)</sup> | —                    | DCIIE         | DCIEIE  | QEI1IE  | PSEMIE  | -       | —        | INT4IE   | INT3IE   | T9IE     | T8IE          | MI2C2IE       | SI2C2IE      | T7IE     | 0000          |
| IEC4        | 0828  | _      | _                     | CTMUIE               | FLT4IE        | QEI2IE  | FLT3IE  | PSESMIE | _       | _        | _        | _        | _        | CRCIE         | U2EIE         | U1EIE        | FLT2IE   | 0000          |
| IEC5        | 082A  | PWM2IE | PWM1IE                | —                    | _             | SPI3IE  | SPI3EIE | U4TXIE  | U4RXIE  | U4EIE    | —        | _        | —        | <b>U3TXIE</b> | <b>U3RXIE</b> | U3EIE        |          | 0000          |
| IEC6        | 082C  | _      | _                     | _                    | _             | _       | _       | _       | _       | _        | _        | _        | _        | PWM6IE        | PWM5IE        | PWM4IE       | PWM3IE   | 0000          |
| IEC8        | 0830  | JTAGIE | ICDIE                 | _                    | _             | _       | _       | _       | _       | _        | _        | _        | _        | _             | _             | _            | _        | 0000          |
| IEC9        | 0832  | _      |                       | —                    | _             | _       | _       | —       | _       | —        | PTG3IE   | PTG2IE   | PTG1IE   | PTG0IE        | PTGWDTIE      | PTGSTEPIE    |          | 0000          |
| IPC0        | 0840  | _      | T1IP2                 | T1IP1                | T1IP0         | _       | OC1IP2  | OC1IP1  | OC1IP0  | —        | IC1IP2   | IC1IP1   | IC1IP0   | —             | INT0IP2       | INT0IP1      | INT0IP2  | 4444          |
| IPC1        | 0842  | _      | T2IP2                 | T2IP1                | T2IP0         | _       | OC2IP2  | OC2IP1  | OC2IP0  | _        | IC2IP2   | IC2IP1   | IC2IP0   | _             | DMA0IP2       | DMA0IP1      | DMA0IP2  | 4444          |
| IPC2        | 0844  | _      | U1RXIP2               | U1RXIP1              | U1RXIP0       | _       | SPI1IP2 | SPI1IP1 | SPI1IP0 | —        | SPI1EIP2 | SPI1EIP1 | SPI1EIP0 | —             | T3IP2         | T3IP1        | T3IP0    | 4444          |
| IPC3        | 0846  | _      | _                     | _                    | _             | _       | DMA1IP2 | DMA1IP1 | DMA1IP0 | _        | AD1IP2   | AD1IP1   | AD1IP0   | _             | U1TXIP2       | U1TXIP1      | U1TXIP0  | 4444          |
| IPC4        | 0848  | _      | CNIP2                 | CNIP1                | CNIP0         | _       | CMPIP2  | CMPIP1  | CMPIP0  | _        | MI2C1IP2 | MI2C1IP1 | MI2C1IP0 | _             | SI2C1IP2      | SI2C1IP1     | SI2C1IP0 | 4444          |
| IPC5        | 084A  | —      | IC8IP2                | IC8IP1               | IC8IP0        | _       | IC7IP2  | IC7IP1  | IC7IP0  | _        | AD2IP2   | AD2IP1   | AD2IP0   | _             | INT1IP2       | INT1IP1      | INT1IP0  | 4444          |
| IPC6        | 084C  | _      | T4IP2                 | T4IP1                | T4IP0         | —       | OC4IP2  | OC4IP1  | OC4IP0  | _        | OC3IP2   | OC3IP1   | OC3IP0   | —             | DMA2IP2       | DMA2IP1      | DMA2IP0  | 4444          |
| IPC7        | 084E  | _      | U2TXIP2               | U2TXIP1              | U2TXIP0       |         | U2RXIP2 | U2RXIP1 | U2RXIP0 | _        | INT2IP2  | INT2IP1  | INT2IP0  |               | T5IP2         | T5IP1        | T5IP0    | 4444          |
| IPC8        | 0850  | _      | —                     | —                    | —             | _       |         | _       |         | —        | SPI2IP2  | SPI2IP1  | SPI2IP0  | _             | SPI2EIP2      | SPI2EIP1     | SPI2EIP0 | 4444          |
| IPC9        | 0852  | _      | IC5IP2                | IC5IP1               | IC5IP0        | _       | IC4IP2  | IC4IP1  | IC4IP0  | _        | IC3IP2   | IC3IP1   | IC3IP0   | _             | DMA3IP2       | DMA3IP1      | DMA3IP0  | 4444          |
| IPC10       | 0854  |        | OC7IP2                | OC7IP1               | OC7IP0        | _       | OC6IP2  | OC6IP1  | OC6IP0  | _        | OC5IP2   | OC5IP1   | OC5IP0   | _             | IC6IP2        | IC6IP1       | IC6IP0   | 4444          |

### TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

Note 1: The PMPIF/PMPIE/PMPIPx flags are not available on 44-pin devices.

2: The RTCCIF/RTCCIE/RTCCIPx flags are not available on 44-pin devices.

#### TABLE 4-35: NVM REGISTER MAP

| SFR<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8   | Bit 7   | Bit 6 | Bit 5 | Bit 4  | Bit 3     | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-------------|-------|--------|--------|--------|---------|--------|--------|-------|---------|---------|-------|-------|--------|-----------|--------|--------|--------|---------------|
| NVMCON      | 0728  | WR     | WREN   | WRERR  | NVMSIDL |        |        | RPDF  | URERR   |         | _     | —     |        | NVMOP3    | NVMOP2 | NVMOP1 | NVMOP0 | 0000          |
| NVMADR      | 072A  |        |        |        |         |        |        |       | NVMAD   | R<15:0> |       |       |        |           |        |        |        | 0000          |
| NVMADRU     | 072C  | _      | _      | _      | _       | _      | _      | _     | -       |         |       |       | NVMAD  | RU<23:16> | >      |        |        | 0000          |
| NVMKEY      | 072E  | _      | _      | _      | _       | _      | _      | _     | -       |         |       |       | NVM    | (EY<7:0>  |        |        |        | 0000          |
| NVMSRCADRL  | 0730  |        |        |        |         |        |        | NVMS  | SRCADR< | 15:1>   |       |       |        |           |        |        | 0      | 0000          |
| NVMSRCADRH  | 0732  |        |        |        |         |        |        |       |         |         |       |       | NVMSRC | ADRH<23:1 | 6>     |        |        | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-36: SYSTEM CONTROL REGISTER MAP

| SFR<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10  | Bit 9   | Bit 8   | Bit 7    | Bit 6    | Bit 5  | Bit 4      | Bit 3   | Bit 2   | Bit 1   | Bit 0   | All<br>Resets |
|-------------|-------|--------|--------|--------|--------|--------|---------|---------|---------|----------|----------|--------|------------|---------|---------|---------|---------|---------------|
| RCON        | 0740  | TRAPR  | IOPUWR | —      | —      | VREGSF | —       | СМ      | VREGS   | EXTR     | SWR      | SWDTEN | WDTO       | SLEEP   | IDLE    | BOR     | POR     | Note 1        |
| OSCCON      | 0742  | _      | COSC2  | COSC1  | COSC0  | —      | NOSC2   | NOSC1   | NOSC0   | CLKLOCK  | IOLOCK   | LOCK   | _          | CF      | _       | LPOSCEN | OSWEN   | Note 2        |
| CLKDIV      | 0744  | ROI    | DOZE2  | DOZE1  | DOZE0  | DOZEN  | FRCDIV2 | FRCDIV1 | FRCDIV0 | PLLPOST1 | PLLPOST0 | _      | PLLPRE4    | PLLPRE3 | PLLPRE2 | PLLPRE1 | PLLPRE0 | 0030          |
| PLLFBD      | 0746  | —      | —      | _      | —      | —      | _       | _       |         |          |          | Pl     | _LDIV<8:0> |         |         |         |         | 0030          |
| OSCTUN      | 0748  | _      | _      |        | _      | —      | _       | _       | _       | _        | _        |        |            | TUN     | I<5:0>  |         |         | 0000          |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the configuration fuses.

## TABLE 4-37: REFERENCE CLOCK REGISTER MAP

| SFR<br>Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| REFOCON     | 074E  | ROON   |        | ROSSLP | ROSEL  | RODIV3 | RODIV2 | RODIV1 | RODIV0 | _     |       | 1     |       |       | _     |       |       | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-58: PORTE REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

| SFR Name | Addr. | Bit 15 | Bit 14       | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|----------|-------|--------|--------------|---------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| TRISE    | 0E40  |        | TRISE        | <15:12> |        | —      | —      | _     | —     | —     | —     | —     | _     | _     | _     | —     | —     | F000          |
| PORTE    | 0E42  |        | RE<1         | 5:12>   |        | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | xxxx          |
| LATE     | 0E44  |        | LATE<15:12>  |         |        |        | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | xxxx          |
| ODCE     | 0E46  |        | ODCE         | <15:12> |        | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| CNENE    | 0E48  |        | CNIEE        | <15:12> |        | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| CNPUE    | 0E4A  |        | CNPUE        | <15:12> |        | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| CNPDE    | 0E4C  |        | CNPDE<15:12> |         |        | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _     | 0000          |
| ANSELE   | 0E4E  |        | ANSE         | <15:12> |        | _      | _      | _     | _     | _     | —     | —     | _     | _     | _     | _     | _     | 0000          |

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-59: PORTF REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

| SFR Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12  | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7      | Bit 6 | Bit 5  | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0  | All<br>Resets |
|----------|-------|--------|--------|--------|---------|--------|--------|--------|-------|------------|-------|--------|-------|-------|-------|-------|--------|---------------|
| TRISF    | 0E50  | _      | —      | TRISF  | <13:12> | _      | TRISF  | <10:9> | _     |            | TRISF | <7:4>  |       | —     | _     | TRISF | <1:0>  | F303          |
| PORTF    | 0E52  | _      | —      | RF<1   | 3:12>   |        | RF<1   | 0:9>   | -     |            | RF<   | 7:4>   |       | —     | _     | RF<   | 1:0>   | xxxx          |
| LATF     | 0E54  |        | —      | LATF<  | 13:12>  |        | LATF<  | :10:9> | _     | LATF<7:4>  |       | —      | _     | LATF  | <1:0> | xxxx  |        |               |
| ODCF     | 0E56  |        | —      | ODCF<  | <13:12> |        | ODCF<  | <10:9> | _     |            | ODCF  | <7:4>  |       | —     | _     | ODCF  | <1:0>  | 0000          |
| CNENF    | 0E58  |        | —      | CNIEF  | <13:12> |        | CNIEF  | <10:9> | _     |            | CNIEF | -<7:4> |       | —     | _     | CNIEF | <1:0>  | 0000          |
| CNPUF    | 0E5A  |        | —      | CNPUF  | <13:12> |        | CNPUF  | <10:9> | _     |            | CNPU  | F<7:4> |       | —     | _     | CNPU  | =<1:0> | 0000          |
| CNPDF    | 0E5C  | _      | _      | CNPDF  | <13:12> | _      | CNPDF  | <10:9> | _     | CNPDF<7:4> |       |        | _     | _     | CNPD  | <1:0> | 0000   |               |
| ANSELF   | 0E4E  | _      | _      | ANSF<  | :13:12> | _      | ANSF<  | <10:9> | _     | _          | _     | ANSF   | <5:4> | _     | _     | _     | _      | 0000          |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

## TABLE 4-60: PORTF REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

| SFR Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0  | All<br>Resets |
|----------|-------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|---------------|
| TRISF    | 0E50  | _      | _      | —      | _      | _      | —      | _     | _     | _     | _     | _     | —     | _     | —     | TRISF | <1:0>  | 0003          |
| PORTF    | 0E52  | _      | _      | _      | _      | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | RF<   | 1:0>   | xxxx          |
| LATF     | 0E54  | _      | _      | _      | _      | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | LATF  | <1:0>  | xxxx          |
| ODCF     | 0E56  | _      | _      | _      | _      | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | ODCF  | <1:0>  | 0000          |
| CNENF    | 0E58  | _      | _      | _      | _      | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | CNIEF | <1:0>  | 0000          |
| CNPUF    | 0E5A  | _      | _      | _      | _      | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | CNPU  | =<1:0> | 0000          |
| CNPDF    | 0E5C  |        | _      | _      | _      | _      | _      | _     | _     | _     | _     | _     | _     | _     | _     | _     | _      | 0000          |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-64 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

# TABLE 4-64:OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND<br/>PSV SPACE BOUNDARIES<sup>(2,3,4)</sup>

| 0/11        |                    |                | Before       |                        |                | After        |                        |
|-------------|--------------------|----------------|--------------|------------------------|----------------|--------------|------------------------|
| 0/0,<br>R/W | Operation          | DSxPAG         | DS<br>EA<15> | Page<br>Description    | DSxPAG         | DS<br>EA<15> | Page Description       |
| O,<br>Read  |                    | DSRPAG = 0x1FF | 1            | EDS: Last Page         | DSRPAG = 0x1FF | 0            | See Note 1             |
| O,<br>Read  | [++Wn]             | DSRPAG = 0x2FF | 1            | PSV: Last Isw<br>Page  | DSRPAG = 0x300 | 1            | PSV: First MSB<br>Page |
| O,<br>Read  | [Wn++]             | DSRPAG = 0x3FF | 1            | PSV: Last MSB<br>Page  | DSRPAG = 0x3FF | 0            | See Note 1             |
| O,<br>Write |                    | DSWPAG = 0x1FF | 1            | EDS: Last Page         | DSWPAG = 0x1FF | 0            | See Note 1             |
| U,<br>Read  | r                  | DSRPAG = 0x001 | 1            | PSV Page               | DSRPAG = 0x001 | 0            | See Note 1             |
| U,<br>Read  | [Wn]<br>Or<br>[Wn] | DSRPAG = 0x200 | 1            | PSV: First lsw<br>Page | DSRPAG = 0x200 | 0            | See Note 1             |
| U,<br>Read  | [ 111 ]            | DSRPAG = 0x300 | 1            | PSV: First MSB<br>Page | DSRPAG = 0x2FF | 1            | PSV: Last Isw<br>Page  |

**Legend:** O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo Linear Addressing is not supported for large offsets.

## 4.5 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

### 4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

| Note: | Y space Modulo Addressing EA calcula- |
|-------|---------------------------------------|
|       | tions assume word-sized data (LSb of  |
|       | every EA is always clear).            |

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

### 4.5.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register bits, MODCON<15:0>, contain enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set (MODCON<14>).

#### FIGURE 4-14: MODULO ADDRESSING OPERATION EXAMPLE



### REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 NVMOP<3:0>: NVM Operation Select bits<sup>(1,3,4)</sup>
  - 1111 = Reserved
  - 1110 = Reserved
  - 1101 = Bulk erase primary program Flash memory
  - 1100 = Reserved
  - 1011 = Reserved
  - 1010 = Reserved
  - 0011 = Memory page erase operation
  - 0010 = Memory row program operation with source data from RAM
  - 0001 = Memory double-word program operation<sup>(5)</sup>
  - 0000 = Reserved
- **Note 1:** These bits can only be reset on POR.
  - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
  - **3:** All other combinations of NVMOP<3:0> are unimplemented.
  - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
  - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
  - 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

| U-0           | U-0                          | U-0                              | U-0                      | U-0               | U-0              | U-0             | U-0    |
|---------------|------------------------------|----------------------------------|--------------------------|-------------------|------------------|-----------------|--------|
| —             | —                            |                                  | —                        | —                 | —                | —               | —      |
| bit 15        |                              |                                  |                          |                   |                  |                 | bit 8  |
|               |                              |                                  |                          |                   |                  |                 |        |
| U-0           | U-0                          | U-0                              | U-0                      | R-0               | R-0              | R-0             | R-0    |
|               |                              |                                  | —                        | RQCOL3            | RQCOL2           | RQCOL1          | RQCOL0 |
| bit 7         |                              |                                  |                          |                   |                  |                 | bit 0  |
| F             |                              |                                  |                          |                   |                  |                 |        |
| Legend:       |                              |                                  |                          |                   |                  |                 |        |
| R = Readable  | e bit                        | W = Writable                     | bit                      | U = Unimpler      | mented bit, read | as '0'          |        |
| -n = Value at | POR                          | '1' = Bit is set                 |                          | '0' = Bit is cle  | ared             | x = Bit is unkr | nown   |
|               |                              |                                  |                          |                   |                  |                 |        |
| bit 15-4      | Unimplemen                   | ted: Read as '                   | 0'                       |                   |                  |                 |        |
| bit 3         | RQCOL3: Ch                   | annel 3 Transf                   | er Request Co            | ollision Flag bit | İ.               |                 |        |
|               | 1 = User FOR                 | RCE and interr                   | upt-based req            | uest collision a  | are detected     |                 |        |
|               | 0 = No reque                 | est collision is d               | etected                  |                   |                  |                 |        |
| bit 2         | RQCOL2: Ch                   | annel 2 Transf                   | er Request Co            | ollision Flag bit | I                |                 |        |
|               | 1 = User FOF                 | RCE and interr                   | upt-based req            | uest collision a  | are detected     |                 |        |
|               | 0 = No reque                 | est collision is d               | etected                  |                   |                  |                 |        |
| bit 1         | RQCOL1: Ch                   | annel 1 Transf                   | er Request Co            | ollision Flag bit |                  |                 |        |
|               | 1 = User FOF<br>0 = No reque | RCE and interrest collision is d | upt-based req<br>etected | uest collision a  | are detected     |                 |        |
| bit 0         | RQCOL0: Ch                   | annel 0 Transf                   | er Request Co            | ollision Flag bit | İ.               |                 |        |
|               |                              |                                  |                          |                   |                  |                 |        |

- 1 = User FORCE and interrupt-based request collision are detected
- 0 = No request collision is detected

| U-0          | R/W-0                    | R/W-0                                | R/W-0                         | R/W-0                     | R/W-0           | R/W-0        | R/W-0 |
|--------------|--------------------------|--------------------------------------|-------------------------------|---------------------------|-----------------|--------------|-------|
|              |                          |                                      |                               | CSCK2R<6:0                | >               |              |       |
| bit 15       | ·                        |                                      |                               |                           |                 |              | bit 8 |
|              |                          |                                      |                               |                           |                 |              |       |
| U-0          | R/W-0                    | R/W-0                                | R/W-0                         | R/W-0                     | R/W-0           | R/W-0        | R/W-0 |
| —            |                          |                                      |                               | CSDIR<6:0>                |                 |              |       |
| bit 7        |                          |                                      |                               |                           |                 |              | bit 0 |
|              |                          |                                      |                               |                           |                 |              |       |
| Legend:      |                          |                                      |                               |                           |                 |              |       |
| R = Readab   | ole bit                  | W = Writable                         | bit                           | U = Unimplen              | nented bit, rea | ad as '0'    |       |
| -n = Value a | at POR                   | '1' = Bit is set                     | '0' = Bit is cle              | ared                      | x = Bit is unki | nown         |       |
|              |                          |                                      |                               |                           |                 |              |       |
| bit 15       | Unimpleme                | ented: Read as '                     | 0'                            |                           |                 |              |       |
| bit 14-8     | CSCK2R<6<br>(see Table 1 | :0>: Assign DCI<br>1-2 for input pin | Clock Input (<br>selection nu | (CSCK) to the C<br>mbers) | Corresponding   | RPn Pin bits |       |
|              | 1111100 =                | Input tied to RPI                    | 124                           |                           |                 |              |       |
|              | •                        |                                      |                               |                           |                 |              |       |
|              | •                        |                                      |                               |                           |                 |              |       |
|              | 0000001 =                | Input tied to CM                     | P1                            |                           |                 |              |       |
|              | 0000000 =                | Input tied to Vss                    | 3                             |                           |                 |              |       |
| bit 7        | Unimpleme                | ented: Read as '                     | 0'                            |                           |                 |              |       |
| bit 6-0      | CSDIR<6:0                | >: Assign DCI D                      | ata Input (CS                 | DI) to the Corre          | sponding RP     | n Pin bits   |       |
|              | (see Table 1             | 1-2 for input pin                    | selection nui                 | mbers)                    |                 |              |       |
|              | 1111100 =                | Input tied to RPI                    | 124                           |                           |                 |              |       |
|              | •                        |                                      |                               |                           |                 |              |       |
|              | •                        |                                      |                               |                           |                 |              |       |
|              | 0000001 =                | Input tied to CM                     | P1                            |                           |                 |              |       |
|              | 0000000 =                | Input tied to Vss                    | 6                             |                           |                 |              |       |

## REGISTER 11-18: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

## 14.1 Input Capture Control Registers

## REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

| U-0             | U-0                        | R/W-0                   | R/W-0              | R/W-0                          | R/W-0            | U-0             | U-0            |
|-----------------|----------------------------|-------------------------|--------------------|--------------------------------|------------------|-----------------|----------------|
| —               | —                          | ICSIDL                  | ICTSEL2            | ICTSEL1                        | ICTSEL0          | _               | —              |
| bit 15          |                            |                         |                    |                                |                  |                 | bit 8          |
|                 |                            |                         |                    |                                |                  |                 |                |
| U-0             | R/W-0                      | R/W-0                   | R/HC/HS-0          | R/HC/HS-0                      | R/W-0            | R/W-0           | R/W-0          |
|                 | ICI1                       | ICI0                    | ICOV               | ICBNE                          | ICM2             | ICM1            | ICM0           |
| bit 7           |                            | 1                       |                    |                                |                  |                 | bit 0          |
|                 |                            |                         |                    |                                |                  |                 |                |
| Legend:         |                            | HC = Hardware           | e Clearable bit    | HS = Hardwa                    | are Settable bit |                 |                |
| R = Readable    | bit                        | W = Writable b          | t                  | U = Unimple                    | mented bit, rea  | id as '0'       |                |
| -n = Value at F | POR                        | '1' = Bit is set        |                    | '0' = Bit is cle               | eared            | x = Bit is unl  | known          |
|                 |                            |                         |                    |                                |                  |                 |                |
| bit 15-14       | Unimplemen                 | ted: Read as '0         | ,                  |                                |                  |                 |                |
| bit 13          | ICSIDL: Inpu               | t Capture x Stop        | in Idle Mode Co    | ontrol bit                     |                  |                 |                |
|                 | 1 = Input Ca               | ,<br>pture x halts in C | PU Idle mode       |                                |                  |                 |                |
|                 | 0 = Input Ca               | pture x continue        | s to operate in C  | PU Idle mode                   |                  |                 |                |
| bit 12-10       | ICTSEL<2:0>                | Input Capture           | x Timer Select b   | oits                           |                  |                 |                |
|                 | 111 <b>= Periph</b>        | eral clock (FP) is      | the clock sourc    | e of ICx                       |                  |                 |                |
|                 | 110 = Reserv               | /ed                     |                    |                                |                  |                 |                |
|                 | 100 = T1CLK                | is the clock sou        | rce of ICx (only   | the synchrono                  | us clock is sup  | ported)         |                |
|                 | 011 = T5CLK                | is the clock sou        | irce of ICx        |                                |                  |                 |                |
|                 | 010 = T4CLK                | is the clock sou        | Irce of ICx        |                                |                  |                 |                |
|                 | 001 = 12CLK                | is the clock sol        | Irce of ICx        |                                |                  |                 |                |
| hit 9-7         |                            | ted: Read as '0         | ,                  |                                |                  |                 |                |
| bit 6-5         |                            | mber of Canture         | s ner Interrunt S  | elect hits                     |                  |                 |                |
|                 | (this field is n           | ot used if ICM<2        | 2:0> = 001 or 11   | 1)                             |                  |                 |                |
|                 | 11 = Interrup              | ts on every fourt       | h capture event    |                                |                  |                 |                |
|                 | 10 = Interrup              | ts on every third       | capture event      | <b></b>                        |                  |                 |                |
|                 | 00 = Interrup              | ts on every secc        | ure event          | it.                            |                  |                 |                |
| bit 4           | ICOV: Input (              | Capture x Overflo       | ow Status Flag b   | it (read-only)                 |                  |                 |                |
|                 | 1 = Input Ca               | pture x buffer ov       | erflow occurred    |                                |                  |                 |                |
|                 | 0 = No Input               | Capture x buffe         | r overflow occuri  | red                            |                  |                 |                |
| bit 3           | ICBNE: Input               | t Capture x Buffe       | er Not Empty Sta   | tus bit (read-o                | nly)             |                 |                |
|                 | 1 = Input Ca               | pture x buffer is       | not empty, at lea  | ist one more ca                | apture value ca  | in be read      |                |
|                 |                            | pture x buffer is       | empty              |                                |                  |                 |                |
| bit 2-0         | ICM<2:0>: In               | put Capture x M         | ode Select bits    | unt nin only in                |                  | d Idla madaa    | (rising odgo   |
|                 | detect                     | capture x function      | ontrol bits are no | of applicable)                 | CPU Sleep an     | a late modes    | (insing edge   |
|                 | 110 = Unuse                | ed (module disat        | oled)              | (app.:casic)                   |                  |                 |                |
|                 | 101 = Captu                | re mode, every          | 16th rising edge   | (Prescaler Ca                  | pture mode)      |                 |                |
|                 | 100 = Captu                | re mode, every 4        | th rising edge (   | Prescaler Capi                 | ture mode)       |                 |                |
|                 | 011 = Captu<br>010 = Captu | re mode, every l        | alling edge (Sim   | pie Capture m<br>ple Capture m | lode)            |                 |                |
|                 | 001 = Captu                | re mode, every e        | edge, rising and   | falling (Edge D                | etect mode, IC   | I<1:0>), is not | t used in this |
|                 | mode)                      | )                       |                    |                                |                  |                 |                |
|                 | 000 = Input                | Capture x modul         | e is turned off    |                                |                  |                 |                |

| HS/HC-0                                                                                                                                                                                | HS/HC-0                                                                                                                           | HS/HC-0                                                                                                            | R/W-0                                    | R/W-0                            | R/W-0                | R/W-0                | R/W-0               |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|----------------------|----------------------|---------------------|--|--|--|
| FLTSTAT(                                                                                                                                                                               | 1) CLSTAT <sup>(1)</sup>                                                                                                          | TRGSTAT                                                                                                            | FLTIEN                                   | CLIEN                            | TRGIEN               | ITB <sup>(2)</sup>   | MDCS <sup>(2)</sup> |  |  |  |
| bit 15                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                    |                                          |                                  | •                    |                      | bit 8               |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                    |                                          |                                  |                      |                      |                     |  |  |  |
| R/W-0                                                                                                                                                                                  | R/W-0                                                                                                                             | R/W-0                                                                                                              | U-0                                      | R/W-0                            | R/W-0                | R/W-0                | R/W-0               |  |  |  |
| DTC1                                                                                                                                                                                   | DTC0                                                                                                                              | DTCP <sup>(3)</sup>                                                                                                | —                                        | MTBS                             | CAM <sup>(2,4)</sup> | XPRES <sup>(5)</sup> | IUE <sup>(2)</sup>  |  |  |  |
| bit 7                                                                                                                                                                                  |                                                                                                                                   |                                                                                                                    |                                          |                                  |                      |                      | bit 0               |  |  |  |
|                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                    |                                          |                                  |                      |                      |                     |  |  |  |
| Legend:                                                                                                                                                                                |                                                                                                                                   | HC = Hardware                                                                                                      | Clearable bit                            | HS = Hardwa                      | are Settable bit     |                      |                     |  |  |  |
| R = Reada                                                                                                                                                                              | ble bit                                                                                                                           | W = Writable b                                                                                                     | it                                       | U = Unimplei                     | mented bit, rea      | d as '0'             |                     |  |  |  |
| -n = Value                                                                                                                                                                             | at POR                                                                                                                            | '1' = Bit is set                                                                                                   |                                          | '0' = Bit is cle                 | eared                | x = Bit is unkn      | iown                |  |  |  |
| bit 15 <b>FLTSTAT:</b> Fault Interrupt Status bit <sup>(1)</sup><br>1 = Fault interrupt is pending<br>0 = No Fault interrupt is pending<br>This bit is cleared by setting: FLTIEN = 0. |                                                                                                                                   |                                                                                                                    |                                          |                                  |                      |                      |                     |  |  |  |
| bit 14 <b>CLSTAT:</b> Current-Limit Interrupt Status bit <sup>(1)</sup>                                                                                                                |                                                                                                                                   |                                                                                                                    |                                          |                                  |                      |                      |                     |  |  |  |
| DIC 11                                                                                                                                                                                 | 1 = Current-limit interrupt is pending<br>0 = No current-limit interrupt is pending<br>This bit is cleared by setting: CLIEN = 0. |                                                                                                                    |                                          |                                  |                      |                      |                     |  |  |  |
| bit 13                                                                                                                                                                                 | TRGSTAT: T<br>1 = Trigger ir<br>0 = No trigge<br>This bit is cle                                                                  | rigger Interrupt<br>nterrupt is pendir<br>r interrupt is per<br>ared by setting:                                   | Status bit<br>ng<br>nding<br>TRGIEN = 0. |                                  |                      |                      |                     |  |  |  |
| bit 12                                                                                                                                                                                 | FLTIEN: Fau                                                                                                                       | lt Interrupt Enab                                                                                                  | le bit                                   |                                  |                      |                      |                     |  |  |  |
|                                                                                                                                                                                        | 1 = Fault inte<br>0 = Fault inte                                                                                                  | errupt is enabled<br>errupt is disabled                                                                            | l and the FLTS                           | TAT bit is clear                 | red                  |                      |                     |  |  |  |
| bit 11                                                                                                                                                                                 | CLIEN: Curre                                                                                                                      | ent-Limit Interru                                                                                                  | ot Enable bit                            |                                  |                      |                      |                     |  |  |  |
|                                                                                                                                                                                        | 1 = Current-li                                                                                                                    | imit interrupt is e                                                                                                | enabled                                  |                                  |                      |                      |                     |  |  |  |
| hit 10                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                    | isabled and the                          | e CLSTAT DITT                    | s cleared            |                      |                     |  |  |  |
| DIL TO                                                                                                                                                                                 | 1 = A trigger                                                                                                                     | event generates                                                                                                    | an interrupt re<br>re disabled and       | equest<br>d the TRGSTA           | T bit is cleared     |                      |                     |  |  |  |
| bit 9                                                                                                                                                                                  | ITB: Indepen                                                                                                                      | ident Time Base                                                                                                    | Mode bit <sup>(2)</sup>                  |                                  |                      |                      |                     |  |  |  |
|                                                                                                                                                                                        | 1 = PHASEx<br>0 = PTPER r                                                                                                         | register provide<br>egister provides                                                                               | s the time base<br>timing for this       | e period for this<br>PWMx genera | s PWMx gener<br>tor  | ator                 |                     |  |  |  |
| bit 8                                                                                                                                                                                  | MDCS: Mast                                                                                                                        | er Duty Cycle R                                                                                                    | egister Select b                         | oit <sup>(2)</sup>               |                      |                      |                     |  |  |  |
| <ul> <li>1 = MDC register provides duty cycle information for this PWMx generator</li> <li>0 = PDCx register provides duty cycle information for this PWMx generator</li> </ul>        |                                                                                                                                   |                                                                                                                    |                                          |                                  |                      |                      |                     |  |  |  |
| Note 1:                                                                                                                                                                                | Software must cle                                                                                                                 | ear the interrupt                                                                                                  | status here and                          | d in the corres                  | ponding IFSx b       | it in the interrup   | ot controller.      |  |  |  |
| 2:                                                                                                                                                                                     | These bits should                                                                                                                 | I not be changed                                                                                                   | after the PWM                            | Ix is enabled (                  | PTEN = 1).           | ·                    |                     |  |  |  |
| 3:                                                                                                                                                                                     | DTC<1:0> = 11 fo                                                                                                                  | or DTCP to be e                                                                                                    | ffective; otherw                         | vise, DTCP is i                  | gnored.              |                      |                     |  |  |  |
| 4:                                                                                                                                                                                     | The Independent<br>CAM bit is ignore                                                                                              | Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the M bit is ignored. |                                          |                                  |                      |                      |                     |  |  |  |

## REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

## REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER

| R/W-0                             | R/W-0 | R/W-0            | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0 |  |  |
|-----------------------------------|-------|------------------|------------------|------------------------------------|----------------------|-------|-------|--|--|
|                                   |       |                  | INDXH            | LD<15:8>                           |                      |       |       |  |  |
| bit 15                            |       |                  |                  |                                    |                      |       | bit 8 |  |  |
|                                   |       |                  |                  |                                    |                      |       |       |  |  |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0 |  |  |
|                                   |       |                  | INDXH            | LD<7:0>                            |                      |       |       |  |  |
| bit 7                             |       |                  |                  |                                    |                      |       | bit 0 |  |  |
|                                   |       |                  |                  |                                    |                      |       |       |  |  |
| Legend:                           |       |                  |                  |                                    |                      |       |       |  |  |
| R = Readable bit W = Writable bit |       |                  | bit              | U = Unimplemented bit, read as '0' |                      |       |       |  |  |
| -n = Value at POR '1' =           |       | '1' = Bit is set | '1' = Bit is set |                                    | '0' = Bit is cleared |       | nown  |  |  |

bit 15-0 INDXHLD<15:0>: Holding Register for Reading and Writing INDXxCNT bits

## REGISTER 17-11: QEIXICH: QEIX INITIALIZATION/CAPTURE HIGH WORD REGISTER

| Legend: |       |       |       |         |       |       |       |
|---------|-------|-------|-------|---------|-------|-------|-------|
| bit 7   |       |       |       |         |       |       | bit 0 |
|         |       |       | QEIIC | <23:16> |       |       |       |
| R/W-0   | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 | R/W-0 |
| bit 15  |       |       |       |         |       |       | bit 8 |
|         |       |       | QEIIC | <31:24> |       |       |       |
| R/W-0   | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 | R/W-0 |

bit 15-0 QEIIC<31:16>: High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

#### REGISTER 17-12: QEIxICL: QEIx INITIALIZATION/CAPTURE LOW WORD REGISTER

| R/W-0                              | R/W-0 | R/W-0 | R/W-0 | R/W-0                                  | R/W-0 | R/W-0 | R/W-0 |  |  |
|------------------------------------|-------|-------|-------|----------------------------------------|-------|-------|-------|--|--|
|                                    |       |       | QEIIC | C<15:8>                                |       |       |       |  |  |
| bit 15                             |       |       |       |                                        |       |       | bit 8 |  |  |
|                                    |       |       |       |                                        |       |       |       |  |  |
| R/W-0                              | R/W-0 | R/W-0 | R/W-0 | R/W-0                                  | R/W-0 | R/W-0 | R/W-0 |  |  |
|                                    |       |       | QEII  | C<7:0>                                 |       |       |       |  |  |
| bit 7                              |       |       |       |                                        |       |       | bit 0 |  |  |
|                                    |       |       |       |                                        |       |       |       |  |  |
| Legend:                            |       |       |       |                                        |       |       |       |  |  |
| R = Readable bit W = Writable bit  |       |       | bit   | U = Unimplemented bit, read as '0'     |       |       |       |  |  |
| -n = Value at POR '1' = Bit is set |       |       |       | '0' = Bit is cleared x = Bit is unknow |       |       | nown  |  |  |
| L                                  |       |       |       |                                        |       |       |       |  |  |

bit 15-0 QEIIC<15:0>: Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

## dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)



### REGISTER 21-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

| R/W-x                              | R/W-x                                            | R/W-x            | R/W-x            | R/W-x                         | R/W-x              | R/W-x    | R/W-x |
|------------------------------------|--------------------------------------------------|------------------|------------------|-------------------------------|--------------------|----------|-------|
| SID10                              | SID9                                             | SID8             | SID7             | SID6                          | SID5               | SID4     | SID3  |
| bit 15                             |                                                  |                  |                  |                               |                    |          | bit 8 |
|                                    |                                                  |                  |                  |                               |                    |          |       |
| R/W-x                              | R/W-x                                            | R/W-x            | U-0              | R/W-x                         | U-0                | R/W-x    | R/W-x |
| SID2                               | SID1                                             | SID0             | —                | EXIDE                         |                    | EID17    | EID16 |
| bit 7                              |                                                  |                  |                  |                               |                    |          | bit 0 |
|                                    |                                                  |                  |                  |                               |                    |          |       |
| Legend:                            |                                                  |                  |                  |                               |                    |          |       |
| R = Readable bit W = Writable bit  |                                                  |                  |                  | U = Unimpler                  | nented bit, read   | l as '0' |       |
| -n = Value at POR (1' = Bit is set |                                                  |                  | '0' = Bit is cle | ared                          | x = Bit is unknown |          |       |
|                                    |                                                  |                  |                  |                               |                    |          |       |
| bit 15-5                           | <b>SID&lt;10:0&gt;:</b> S                        | tandard Identif  | ier bits         |                               |                    |          |       |
|                                    | 1 = Message                                      | address bit, SI  | Dx, must be '    | 1' to match filte             | er                 |          |       |
|                                    | 0 = Message                                      | address bit, SI  | Dx, must be '    | 0' to match filte             | er                 |          |       |
| bit 4                              | Unimplemen                                       | ted: Read as '   | כ'               |                               |                    |          |       |
| bit 3                              | EXIDE: Exten                                     | ded Identifier E | Enable bit       |                               |                    |          |       |
|                                    | If MIDE = 1:                                     |                  |                  |                               |                    |          |       |
|                                    | 1 = Matches o                                    | only messages    | with Extende     | d Identifier add              | Iresses            |          |       |
|                                    |                                                  | only messages    | with Standard    | a identifier add              | resses             |          |       |
|                                    | $\frac{\text{If MIDE} = 0}{\text{Ignores EXID}}$ | E hit            |                  |                               |                    |          |       |
| hit 2                              | Unimplement                                      | ted: Read as 'r  | ר <b>י</b>       |                               |                    |          |       |
| bit 1 0                            |                                                  | Extended Iden    | J<br>tifior hito |                               |                    |          |       |
| DIL 1-0                            | EID<17:10>:                                      |                  |                  | 1 <sup>2</sup> to motob filto | -                  |          |       |
|                                    | $\perp = \text{INESSAGE}$                        | address bit, El  | Dx, must be '.   | 1 to match filte              | 51<br>Ar           |          |       |
|                                    | 0 - Mcssaye                                      |                  |                  |                               | 1                  |          |       |

### REGISTER 21-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

| R/W-x                              | R/W-x | R/W-x | R/W-x                                   | R/W-x  | R/W-x | R/W-x | R/W-x |
|------------------------------------|-------|-------|-----------------------------------------|--------|-------|-------|-------|
|                                    |       |       | EID                                     | <15:8> |       |       |       |
| bit 15                             |       |       |                                         |        |       |       | bit 8 |
|                                    |       |       |                                         |        |       |       |       |
| R/W-x                              | R/W-x | R/W-x | R/W-x                                   | R/W-x  | R/W-x | R/W-x | R/W-x |
|                                    |       |       | EID                                     | <7:0>  |       |       |       |
| bit 7                              |       |       |                                         |        |       |       | bit 0 |
|                                    |       |       |                                         |        |       |       |       |
| Legend:                            |       |       |                                         |        |       |       |       |
| R = Readable bit W = Writable bit  |       |       | U = Unimplemented bit, read as '0'      |        |       |       |       |
| -n = Value at POR '1' = Bit is set |       |       | '0' = Bit is cleared x = Bit is unknown |        |       |       |       |

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

| R/W-0                                                                      | R/W-0                                                                                                                                                                                                                                                       | R/W-0                                                                 | R/W-0                                 | R/W-0                         | R/W-0            | R/W-0    | R/W-0    |  |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|-------------------------------|------------------|----------|----------|--|--|--|
| EDG1MO                                                                     | D EDG1POL                                                                                                                                                                                                                                                   | EDG1SEL3                                                              | EDG1SEL2                              | EDG1SEL1                      | EDG1SEL0         | EDG2STAT | EDG1STAT |  |  |  |
| bit 15                                                                     |                                                                                                                                                                                                                                                             |                                                                       |                                       |                               |                  |          | bit 8    |  |  |  |
|                                                                            |                                                                                                                                                                                                                                                             |                                                                       |                                       |                               |                  |          |          |  |  |  |
| R/W-0                                                                      | R/W-0                                                                                                                                                                                                                                                       | R/W-0                                                                 | R/W-0                                 | R/W-0                         | R/W-0            | U-0      | U-0      |  |  |  |
| EDG2MO                                                                     | D EDG2POL                                                                                                                                                                                                                                                   | EDG2SEL3                                                              | EDG2SEL2                              | EDG2SEL1                      | EDG2SEL0         | —        | —        |  |  |  |
| bit 7                                                                      |                                                                                                                                                                                                                                                             |                                                                       |                                       |                               |                  |          | bit 0    |  |  |  |
| ·                                                                          |                                                                                                                                                                                                                                                             |                                                                       |                                       |                               |                  |          |          |  |  |  |
| Legend:                                                                    |                                                                                                                                                                                                                                                             |                                                                       |                                       |                               |                  |          |          |  |  |  |
| R = Reada                                                                  | ble bit                                                                                                                                                                                                                                                     | W = Writable                                                          | bit                                   | U = Unimplen                  | nented bit, read | l as '0' |          |  |  |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |                                                                                                                                                                                                                                                             |                                                                       |                                       |                               |                  |          | nown     |  |  |  |
| bit 15<br>bit 14                                                           | EDG1MOD: E<br>1 = Edge 1 is<br>0 = Edge 1 is<br>EDG1POL: E<br>1 = Edge 1 is                                                                                                                                                                                 | Edge 1 Edge Sa<br>edge-sensitive<br>level-sensitive<br>dge 1 Polarity | ampling Mode :<br>e<br>Select bit     | Selection bit                 |                  |          |          |  |  |  |
|                                                                            | 0 = Edge 1 is                                                                                                                                                                                                                                               | programmed f                                                          | for a negative e                      | edge response                 |                  |          |          |  |  |  |
| bit 13-10                                                                  | EDG1SEL<3:                                                                                                                                                                                                                                                  | : <b>0&gt;:</b> Edge 1 So                                             | urce Select bits                      | S                             |                  |          |          |  |  |  |
|                                                                            | 1111 = Fosc<br>1110 = OSCI pin<br>1101 = FRC oscillator<br>1100 = Reserved<br>1011 = Internal LPRC oscillator<br>1010 = Reserved<br>100x = Reserved<br>01xx = Reserved<br>0111 = CTED1 pin<br>0010 = CTED2 pin<br>0001 = OC1 module<br>0000 = Timer1 module |                                                                       |                                       |                               |                  |          |          |  |  |  |
| bit 9                                                                      | EDG2STAT: E                                                                                                                                                                                                                                                 | Edge 2 Status b                                                       | pit                                   |                               |                  |          |          |  |  |  |
|                                                                            | Indicates the :<br>1 = Edge 2 h<br>0 = Edge 2 h                                                                                                                                                                                                             | status of Edge<br>as occurred<br>as not occurred                      | 2 and can be v<br>d                   | vritten to contro             | ol the edge sou  | rce.     |          |  |  |  |
| bit 8                                                                      | <b>EDG1STAT:</b> Edge 1 Status bit<br>Indicates the status of Edge 1 and can be written to control the edge source.<br>1 = Edge 1 has occurred<br>0 = Edge 1 has not occurred                                                                               |                                                                       |                                       |                               |                  |          |          |  |  |  |
| bit 7                                                                      | EDG2MOD: E                                                                                                                                                                                                                                                  | Edge 2 Edge Sa                                                        | ampling Mode                          | Selection bit                 |                  |          |          |  |  |  |
|                                                                            | 1 = Edge 2 is<br>0 = Edge 2 is                                                                                                                                                                                                                              | s edge-sensitive<br>s level-sensitive                                 | 9                                     |                               |                  |          |          |  |  |  |
| bit 6                                                                      | EDG2POL: E                                                                                                                                                                                                                                                  | dge 2 Polarity                                                        | Select bit                            |                               |                  |          |          |  |  |  |
|                                                                            | 1 = Edge 2 is<br>0 = Edge 2 is                                                                                                                                                                                                                              | programmed f<br>programmed f                                          | for a positive en<br>for a negative e | dge response<br>edge response |                  |          |          |  |  |  |
| Note 1:                                                                    | <ul> <li>0 = Edge 2 is programmed for a negative edge response</li> <li>If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.</li> </ul>         |                                                                       |                                       |                               |                  |          |          |  |  |  |

## REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

## 32.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

## 32.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent<sup>®</sup> and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika<sup>®</sup>

| DC CHARACT       | ERISTICS            |      | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |            |       |            |  |  |
|------------------|---------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|------------|--|--|
| Parameter<br>No. | Тур. <sup>(2)</sup> | Max. | Units                                                                                                                                                                                                | Conditions |       |            |  |  |
| Idle Current (II | dle) <sup>(1)</sup> |      |                                                                                                                                                                                                      |            |       |            |  |  |
| DC40d            | 1.5                 | 8.0  | mA                                                                                                                                                                                                   | -40°C      |       |            |  |  |
| DC40a            | 1.5                 | 8.0  | mA                                                                                                                                                                                                   | +25°C      | 3 3\/ | 10 MIPS    |  |  |
| DC40b            | 1.5                 | 8.0  | mA                                                                                                                                                                                                   | +85°C      | 5.5 v | TO WILL S  |  |  |
| DC40c            | 1.5                 | 8.0  | mA                                                                                                                                                                                                   | +125°C     |       |            |  |  |
| DC41d            | 2.0                 | 12.0 | mA                                                                                                                                                                                                   | -40°C      |       |            |  |  |
| DC41a            | 2.0                 | 12.0 | mA                                                                                                                                                                                                   | +25°C      | 2.31/ |            |  |  |
| DC41b            | 2.0                 | 12.0 | mA                                                                                                                                                                                                   | +85°C      | 5.5 V | 20 10117-3 |  |  |
| DC41c            | 2.0                 | 12.0 | mA                                                                                                                                                                                                   | +125°C     |       |            |  |  |
| DC42d            | 5.5                 | 15.0 | mA                                                                                                                                                                                                   | -40°C      |       | ļ          |  |  |
| DC42a            | 5.5                 | 15.0 | mA                                                                                                                                                                                                   | +25°C      | 2.31/ |            |  |  |
| DC42b            | 5.5                 | 15.0 | mA                                                                                                                                                                                                   | +85°C      | 5.5 V | 40 MIF 3   |  |  |
| DC42c            | 5.5                 | 15.0 | mA                                                                                                                                                                                                   | +125°C     |       |            |  |  |
| DC43d            | 9.0                 | 20.0 | mA                                                                                                                                                                                                   | -40°C      |       |            |  |  |
| DC43a            | 9.0                 | 20.0 | mA                                                                                                                                                                                                   | +25°C      | 2.31/ | 60 MIDS    |  |  |
| DC43b            | 9.0                 | 20.0 | mA                                                                                                                                                                                                   | +85°C      | 5.5 V | 00 1011-3  |  |  |
| DC43c            | 9.0                 | 20.0 | mA                                                                                                                                                                                                   | +125°C     |       |            |  |  |
| DC44d            | 10.0                | 25.0 | mA                                                                                                                                                                                                   | -40°C      |       |            |  |  |
| DC44a            | 10.0                | 25.0 | mA                                                                                                                                                                                                   | +25°C      | 3.3V  | 70 MIPS    |  |  |
| DC44b            | 10.0                | 25.0 | mA                                                                                                                                                                                                   | +85°C      |       |            |  |  |

| TABLE 33-7: | DC CHARACTERISTICS: IDLE CURRENT (II | DLE) |
|-------------|--------------------------------------|------|
|-------------|--------------------------------------|------|

**Note 1:** Base Idle current (IIDLE) is measured as follows:

 CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)</li>

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$  = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

# dsPIC33EPXXXGM3XX/6XX/7XX





## TABLE 33-20: I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |        |                                   |      | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$ |      |       |            |  |  |
|--------------------|--------|-----------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------|--|--|
| Param<br>No.       | Symbol | Characteristic                    | Min. | Тур. <sup>(1)</sup>                                                                                                                                                                                                                                                                   | Max. | Units | Conditions |  |  |
| DO31               | TioR   | Port Output Rise Time             | _    | 5                                                                                                                                                                                                                                                                                     | 10   | ns    |            |  |  |
| DO32               | TIOF   | Port Output Fall Time             | —    | 5                                                                                                                                                                                                                                                                                     | 10   | ns    |            |  |  |
| DI35               | TINP   | INTx Pin High or Low Time (input) | 20   | —                                                                                                                                                                                                                                                                                     | _    | ns    |            |  |  |
| DI40               | Trbp   | CNx High or Low Time (input)      | 2    | —                                                                                                                                                                                                                                                                                     |      | TCY   |            |  |  |

**Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

## FIGURE 33-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS



# TABLE 33-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

|        |                       |                                                                             | Standard Operating Conditions: 3.0V to 3.6V                               |                     |      |       |                                       |  |
|--------|-----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|------|-------|---------------------------------------|--|
| AC CHA | ARACTERIS             | Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |                                                                           |                     |      |       |                                       |  |
|        |                       |                                                                             | $-40^{\circ}\text{C} \le 1\text{A} \le +125^{\circ}\text{C}$ for Extended |                     |      |       |                                       |  |
| Param. | Symbol                | Characteristic(')                                                           | Min.                                                                      | Typ. <sup>(2)</sup> | Max. | Units | Conditions                            |  |
| SP70   | FscP                  | Maximum SCK1 Input Frequency                                                | —                                                                         | _                   | 25   | MHz   | (Note 3)                              |  |
| SP72   | TscF                  | SCK1 Input Fall Time                                                        | —                                                                         |                     |      | ns    | See Parameter<br>DO32 <b>(Note 4)</b> |  |
| SP73   | TscR                  | SCK1 Input Rise Time                                                        | —                                                                         |                     | _    | ns    | See Parameter<br>DO31 <b>(Note 4)</b> |  |
| SP30   | TdoF                  | SDO1 Data Output Fall Time                                                  | —                                                                         |                     | _    | ns    | See Parameter<br>DO32 <b>(Note 4)</b> |  |
| SP31   | TdoR                  | SDO1 Data Output Rise Time                                                  | —                                                                         | _                   | _    | ns    | See Parameter<br>DO31 <b>(Note 4)</b> |  |
| SP35   | TscH2doV,<br>TscL2doV | SDO1 Data Output Valid after<br>SCK1 Edge                                   | —                                                                         | 6                   | 20   | ns    |                                       |  |
| SP36   | TdoV2scH,<br>TdoV2scL | SDO1 Data Output Setup to<br>First SCK1 Edge                                | 20                                                                        | _                   | _    | ns    |                                       |  |
| SP40   | TdiV2scH,<br>TdiV2scL | Setup Time of SDI1 Data Input to SCK1 Edge                                  | 20                                                                        | _                   | _    | ns    |                                       |  |
| SP41   | TscH2diL,<br>TscL2diL | Hold Time of SDI1 Data Input to SCK1 Edge                                   | 15                                                                        |                     |      | ns    |                                       |  |
| SP50   | TssL2scH,<br>TssL2scL | $\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓<br>Input                             | 120                                                                       |                     |      | ns    |                                       |  |
| SP51   | TssH2doZ              | SS1 ↑ to SDO1 Output<br>High-Impedance                                      | 10                                                                        |                     | 50   | ns    | (Note 4)                              |  |
| SP52   | TscH2ssH,<br>TscL2ssH | SS1 ↑ after SCK1 Edge                                                       | 1.5 Tcy + 40                                                              | _                   | _    | ns    | (Note 4)                              |  |
| SP60   | TssL2doV              | SDO1 Data Output Valid after<br>SS1 Edge                                    | —                                                                         | _                   | 50   | ns    |                                       |  |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

**2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

**3:** The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | MILLIMETERS |      |          |      |  |  |
|----------------------------|-------------|------|----------|------|--|--|
| Dimension                  | MIN         | NOM  | MAX      |      |  |  |
| Contact Pitch              | E           |      | 0.50 BSC |      |  |  |
| Optional Center Pad Width  | W2          |      |          | 7.35 |  |  |
| Optional Center Pad Length | T2          |      |          | 7.35 |  |  |
| Contact Pad Spacing        | C1          |      | 8.90     |      |  |  |
| Contact Pad Spacing        | C2          |      | 8.90     |      |  |  |
| Contact Pad Width (X64)    | X1          |      |          | 0.30 |  |  |
| Contact Pad Length (X64)   | Y1          |      |          | 0.85 |  |  |
| Distance Between Pads      | G           | 0.20 |          |      |  |  |

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A