

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep256gm710t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-4).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGM3XX/6XX/7XX devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000 of Flash memory, with the actual address for the start of code at address, 0x000002 of Flash memory.

A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector **Table**".

FIGURE 4-4: PROGRAM MEMORY ORGANIZATION

			01120															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Tin	ner1 Registe	er							0000
PR1	0102		Period Register 1								FFFF							
T1CON	0104	TON		TSIDL	_	_		_	—	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106		Timer2 Register 0										0000					
TMR3HLD	0108		Timer3 Holding Register (For 32-bit timer operations only)									xxxx						
TMR3	010A								Tin	ner3 Registe	er							0000
PR2	010C		Period Register 2								FFFF							
PR3	010E								Per	iod Register	3							FFFF
T2CON	0110	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	—	TCS	_	0000
T3CON	0112	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000
TMR4	0114		Timer4 Register								0000							
TMR5HLD	0116		Timer5 Holding Register (For 32-bit timer operations only)									xxxx						
TMR5	0118		Timer5 Register									0000						
PR4	011A		Period Register 4								FFFF							
PR5	011C								Per	iod Register	5							FFFF
T4CON	011E	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T5CON	0120	TON	_	TSIDL	—		_	_	_	_	TGATE	TCKPS1	TCKPS0	_	—	TCS	_	0000
TMR6	0122								Tin	ner6 Registe	er							0000
TMR7HLD	0124						Tim	er7 Holdir	ng Register	r (For 32-bit	timer opera	tions only)						xxxx
TMR7	0126								Tin	ner7 Registe	er							0000
PR6	0128								Per	iod Register	6							FFFF
PR7	012A								Per	iod Register	7							FFFF
T6CON	012C	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T7CON	012E	TON	_	TSIDL	_	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR8	0130								Tin	ner8 Registe	er							0000
TMR9HLD	0132						Tim	er9 Holdir	ng Register	r (For 32-bit	timer opera	tions only)						xxxx
TMR9	0134								Tin	ner9 Registe	er							0000
PR8	0136								Per	iod Register	8							FFFF
PR9	0138								Peri	iod Register	9							FFFF
T8CON	013A	TON	—	TSIDL	—	_	_	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T9CON	013C	TON	_	TSIDL	_			_	—	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

dsPIC33EPXXXGM3XX/6XX/7XX

TABLE 4-4: TIMERS REGISTER MAP

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: QEI1 REGISTER MAP

SFR	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
Name																		Resets
QEI1CON	01C0	QEIEN	—	QEISIDL	PIMOD2	PIMOD1	PIMOD0	IMV1	IMV0	—	INTDIV2	INTDIV1	INTDIV0	CNTPOL	GATEN	CCM1	CCM0	0000
QEI1IOC	01C2	QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6							F	POSCNT<15:)>								0000
POS1CNTH	01C8		POSCNT<31:16> 0000															
POS1HLD	01CA		POSHLD<15:0> 0000															
VEL1CNT	01CC		VELCNT<15:0> 0000															
INT1TMRL	01CE		INTTMR<15:0> 0000															
INT1TMRH	01D0							I	NTTMR<31:1	6>								0000
INT1HLDL	01D2								INTHLD<15:0	>								0000
INT1HLDH	01D4							I	NTHLD<31:1	6>								0000
INDX1CNTL	01D6							I	NDXCNT<15:	0>								0000
INDX1CNTH	01D8							IN	NDXCNT<31:	16>								0000
INDX1HLD	01DA							I	NDXHLD<15:	0>								0000
QEI1GECL	01DC							(QEIGEC<15:()>								0000
QEI1ICL	01DC								QEIIC<15:0>	`								0000
QEI1GECH	01DE							(QEIGEC<31:1	6>								0000
QEI1ICH	01DE								QEIIC<31:16	>								0000
QEI1LECL	01E0								QEILEC<15:0	>								0000
QEI1LECH	01E2							(QEILEC<31:1	6>								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 7-1: dsPIC33EPXXXGM3XX/6XX/7XX INTERRUPT VECTOR TABLE

▲	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
ξ	Oscillator Fail Trap Vector	0x000004	
rior	Address Error Trap Vector	0x000006	
ч Г	Generic Hard Trap Vector	0x00008	
Orde	Stack Error Trap Vector	0x00000A	
ସ୍ (Math Error Trap Vector	0x00000C	
atur	DMA Controller Error Trap Vector	0x00000E	
Ž D	Generic Soft Trap Vector	0x000010	
Ising	Reserved	0x000012	
crea	Interrupt Vector 0	0x000014	
Dec	Interrupt Vector 1	0x000016	
	:	:	\backslash
	:	:	
۲	:	:	
2	Interrupt Vector 52	0x00007C	\backslash
	Interrupt Vector 53	0x00007E	
	Interrupt Vector 54	0x000080	\setminus
	:	:	See Table 7-1 for
	:	:	
	:	:	
	Interrupt Vector 116	0x0000FC	
	Interrupt Vector 117	0x0000FE	
	Interrupt Vector 118	0x000100	
	Interrupt Vector 119	0x000102	
	Interrupt Vector 120	0x000104	
	:	:	
	:	: /	/
	:	: /	
V	Interrupt Vector 244	0x0001FC /	
	Interrupt Vector 245	0x0001FE	
	START OF CODE	0x000200	

7.3 Interrupt Control and Status Registers

dsPIC33EPXXXGM3XX/6XX/7XX devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap (SGHT) status bit.

7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM<7:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"CPU"** (DS70359).

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	-	—	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
	—	DAE	DOOVR	—	—	_	—	
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-6	Unimplemen	ted: Read as	'0'					
bit 5	DAE: DMA A	ddress Error S	Soft Trap Status	s bit				
	1 = DMA add	ress error soft	trap has occur	rred				
	0 = DMA add	ress error soft	trap has not o	ccurred				
bit 4	DOOVR: DO	Stack Overflow	v Soft Trap Sta	tus bit				
	1 = DO stack	overflow soft tr	rap has occurre	ed				

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

	0 = DO stack overflow soft trap has not occurred
bit 3-0	Unimplemented: Read as '0'

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15			•				bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	SGHT			
bit 7 bit 0										
Legend:										

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	Legena.			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 0 SGHT: Software Generated Hard Trap Status bit

- 1 = Software generated hard trap has occurred
- 0 = Software generated hard trap has not occurred

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PAD)<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PAI	D<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Wri			Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is s				'0' = Bit is cle	x = Bit is unknown			

bit 15-0 PAD<15:0>: DMA Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—			CNT<	13:8> (2)						
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CNT<7:0> ⁽²⁾											
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 11-38: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—		RP70R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	RP69R<5:0>							

bit 7	
-------	--

bit 7

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM304/604 devices.

REGISTER 11-39: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP97R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
		RP81R<5·0>(2)							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP97R<5:0>: Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP81R<5:0>: Peripheral Output Function is Assigned to RP81 Output Pin bits ⁽²⁾ (see Table 11-3 for peripheral function numbers)
Note 1:	This register is not available on dsPIC33EPXXXGM304/604 devices.

2: These bits are not available on dsPIC33EPXXXGM306/706 devices.

bit 0

bit 0

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS70362), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as eight independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 and Timer8 are the least significant word (Isw); Timer3, Timer5, Timer7 and Timer9 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON register control bits are ignored. Only T2CON, T4CON, T6CON and T8CON register control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Timer7 and Timer9 interrupt flags.

A block diagram for an example of a 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15			•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PENH: PWMx	xH Output Pin o odule controls t	Ownership bit the PWMxH p	in			
bit 14			ie PVVIVIXH pir	1			
Dit 14	1 = PWMx mo 0 = GPIO mo	odule controls t dule controls th	the PWMxL pine PWMxL pin	n I			
bit 13	POLH: PWM	xH Output Pin	Polarity bit				
	1 = PWMxH p 0 = PWMxH p	oin is active-low oin is active-hig	v Jh				
bit 12	POLL: PWM>	<l f<="" output="" pin="" td=""><td>Polarity bit</td><td></td><td></td><td></td><td></td></l>	Polarity bit				
	1 = PWMxL p 0 = PWMxL p	in is active-low in is active-hig	/ h				
bit 11-10	PMOD<1:0>:	PWMx # I/O P	in Mode bits ⁽¹)			
	11 = PWMx // 10 = PWMx // 01 = PWMx // 00 = PWMx //	/O pin pair is in /O pin pair is in /O pin pair is in /O pin pair is in	the True Inde Push-Pull Ou Redundant C Complement	ependent Outpu Itput mode Output mode arv Output mode	ut mode de		
bit 9	OVRENH: OV	verride Enable	for PWMxH P	in bit			
	1 = OVRDAT∙ 0 = PWMx ge	<1> controls th enerator control	e output on th Is the PWMxH	e PWMxH pin I pin			
bit 8	OVRENL: Ov	erride Enable f	for PWMxL Pi	n bit			
	1 = OVRDAT 0 = PWMx ge	<0> controls th enerator control	e output on th ls the PWMxL	e PWMxL pin pin			
bit 7-6	OVRDAT<1:0 If OVERENH If OVERENL	Description: Description (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	VMxH, PWMxl s driven to the driven to the	L Pins if Overri state specified state specified	de is Enabled b by OVRDAT< by OVRDAT<0	its 1>. >.	
bit 5-4	FLTDAT<1:0	>: Data for PW	MxH and PWI	MxL Pins if FLT	MOD is Enable	ed bits	
	If Fault is active If Fault is active	ve, PWMxH is ve, PWMxL is o	driven to the s driven to the s	state specified	by FLTDAT<1> by FLTDAT<0>.		
bit 3-2	CLDAT<1:0>	: Data for PWN	/IxH and PWIV	IxL Pins if CLN	IOD is Enabled	bits	
	If current limit If current limit	is active, PWN is active, PWN	/IxH is driven f /IxL is driven t	to the state spe o the state spe	ecified by CLDA cified by CLDA	.T<1>. T<0>.	
Note 1: The	ese bits should	not be changed	d after the PW	Mx module is o	enabled (PTEN	= 1).	

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD		
bit 15							bit 8		
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0		
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	IFLTMOD: Ind 1 = Independ 0 = Independ	dependent Fau dent Fault mode dent Fault mode	lt Mode Enab e is enabled e is disabled	le bit					
bit 14-10	<pre>0 = Independent Fault mode is disabled 0 = Independent Fault mode is disabled CLSRC<4:0>: Current-Limit Control Signal Source Select for the PWMx Generator # bits 1111 = Fault 32 11110 = Reserved • • • • • • • • • • • • •</pre>								
bit 9	CLPOL: Curr 1 = The selec 0 = The selec	ent-Limit Polari ted current-lim ted current-lim	ty for PWMx (it source is ac it source is ac	Generator # bit tive-low tive-high	(1)				
bit 8	CLMOD: Curr 1 = Current-L 0 = Current-L	rent-Limit Mode imit mode is er imit mode is dis	e Enable for P labled sabled	WMx Generat	or # bit				

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 17-6: POSxHLD: POSITION COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSHI	_D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 **POSHLD<15:0>:** Holding Register for Reading and Writing POSxCNT bits

REGISTER 17-7: VELxCNT: VELOCITY COUNTER x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	oit	t U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unkr		nown		

bit 15-0 VELCNT<15:0>: Velocity Counter x bits

REGISTER 21-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE		EID17	EID16
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15-5	SID<10:0>: S	tandard Identif	ier bits				
	1 = Message	address bit, SI	Dx, must be '	1' to match filte	er		
	0 = Message	address bit, SI	Dx, must be '	0' to match filte	er		
bit 4	Unimplemen	ted: Read as '	כ'				
bit 3	EXIDE: Exten	ded Identifier E	Enable bit				
	If MIDE = 1:						
	1 = Matches o	only messages	with Extende	d Identifier add	Iresses		
		only messages	with Standard	a identifier add	resses		
	$\frac{\text{If MIDE} = 0}{\text{Ignores EXID}}$	E hit					
hit 2	Unimplement	ted: Read as 'r	ר י				
bit 1 0		Extended Iden	J tifior hito				
DIL 1-0	EID<17:10>:			1 ² to motob filto	-		
	$\perp = \text{INESSAGE}$	address bit, El	Dx, must be '.	1 to match filte	51 Ar		
	0 - Mcssaye				1		

REGISTER 21-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,								
	refer to	the	"16-bit	MCU	and	DSC			
	Programn	ner's	Refe	erence	Ma	anual"			
	(DS70157).							

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register $\in \{W0W15\}$
Wd	Destination W register \in { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Dividend, Divisor Working register pair (direct addressing)

TABLE 31-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS

Wm,Wn

TABLE 31-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
-------------	---

Field	Description				
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}				
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}				
Wn	One of 16 Working registers ∈ {W0W15}				
Wnd	One of 16 Destination Working registers ∈ {W0W15}				
Wns	One of 16 Source Working registers ∈ {W0W15}				
WREG	W0 (Working register used in File register instructions)				
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }				
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }				
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}				
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}				
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}				
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}				

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Тур. ⁽²⁾	Max.	Units	Units Conditions				
Operating Cu	rrent (IDD) ⁽¹⁾							
DC20d	6.0	18.0	mA	-40°C				
DC20a	6.0	18.0	mA	+25°C	3 3//			
DC20b	6.0	18.0	mA	+85°C	5.5V	10 1011-5		
DC20c	6.0	18.0	mA	+125°C				
DC21d	11.0	20.0	mA	-40°C		20 MIPS		
DC21a	11.0	20.0	mA	+25°C	2.21/			
DC21b	11.0	20.0	mA	+85°C	3.3V			
DC21c	11.0	20.0	mA	+125°C				
DC22d	17.0	30.0	mA	-40°C				
DC22a	17.0	30.0	mA	+25°C	2 2)/			
DC22b	17.0	30.0	mA	+85°C	3.3V	40 101173		
DC22c	17.0	30.0	mA	+125°C				
DC23d	25.0	50.0	mA	-40°C				
DC23a	25.0	50.0	mA	+25°C	2 2)/			
DC23b	25.0	50.0	mA	+85°C	3.3V			
DC23c	25.0	50.0	mA	+125°C				
DC24d	30.0	60.0	mA	-40°C				
DC24a	30.0	60.0	mA	+25°C	3.3V	70 MIPS		
DC24b	30.0	60.0	mA	+85°C				

TABLE 33-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

 Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- CPU executing
 - while(1)
 - {
 - NOP(); }
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

TABLE 33-26: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	_	_		ns	See Parameter DO32
OC11	TccR	OCx Output Rise Time	—	—		ns	See Parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 33-27: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No. Symbol Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions	
OC15	Tfd	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B