

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm304-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGM3XX/6XX/7XX family ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

				-	-		
R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	R/W-0	R/W-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	—	—	RPDF	URERR ⁽⁶⁾
bit 15	·			•			bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit 0
Legend:		SO = Settab	le Only bit				
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ired	x = Bit is unkn	own
bit 15	WR: NVM W	rite Control bit	(1)				
	1 = Initiates	a Flash mem	ory program o	r erase operati	on; the operation	on is self-timed	and the bit is
		by hardware of	nce the operati	on is complete			
bit 11		Write Enchle	ation is comple				
DIL 14	1 - Enables		Dir Verase operati	one			
	0 = Inhibits F	lash program	erase operatio	ins			
bit 13	WRERR: NV	M Write Seque	ence Error Flag	g bit ⁽¹⁾			
	1 = An impro	per program o	r erase sequen	ce attempt, or te	ermination has o	ccurred (bit is se	et automatically
	on any se	et attempt of th	e WR bit)				
	0 = The prog	gram or erase	operation com	oleted normally			
bit 12	NVMSIDL: N	VM Stop in Idl	e Control bit ⁽²⁾				
	1 = Flash vo 0 = Flash vo	Itage regulator	goes into Star	ndby mode durii Ia Idle mode	ng Idle mode		
bit 11-10	Unimplemen	ted: Read as	'0'				
hit 9	RPDF: Bus A	Astered Row	° Programming	Data Format Co	ontrol bit		
bit o	1 = Row data	a to be stored	in RAM in com	pressed format			
	0 = Row data	a to be stored	in RAM in unco	ompressed form	nat		
bit 8	URERR: Bus	Mastered Ro	w Programming	g Data Underru	n Error Flag bit ⁽	6)	
	1 = Indicates	s that a bus n	nastered row p	programming op	peration has be	en termination	due to a data
	underrur	n error		1			
1.1.7.4		s no data unde	rrun error is de	etected			
dit 7-4	Unimplemen	ited: Read as	0				
Note 1:	These bits can c	only be reset o	n POR.				
2:	If this bit is set, t	here will be m	inimal power sa	avings (IIDLE), a	ind upon exiting	Idle mode, the	re is a delay
•	(IVREG) before I	-lash memory	becomes oper	ational.			
3:	All other combin	ations of NVM	UP<3:0> are u	inimplemented.			
4:	Execution of the	PWRSAV INSTR	lotion is ignore	a while any of t	ne ivvivi operat	ions are in prog	ress.

- 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
- 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	_	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
			_	PPST3	PPST2	PPST1	PPST0		
bit 7							bit 0		
r									
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknown					
bit 15-4	Unimplemen	ted: Read as '	0'						
bit 3	PPST3: Char	nnel 3 Ping-Po	ng Mode Statu	is Flag bit					
	1 = DMA3ST	B register is se	elected						
	0 = DMA3ST	A register is se	elected						
bit 2	PPST2: Char	nnel 2 Ping-Po	ng Mode Statu	is Flag bit					
	1 = DMA2ST	B register is se	elected						
	0 = DMA2ST	0 = DMA2STA register is selected							
bit 1	PPST1: Char	nnel 1 Ping-Po	ng Mode Statu	is Flag bit					
	1 = DMA1ST	B register is se	elected						
	0 = DMA1ST	A register is se	elected						
hit 0	PPSTO Char	PPST0: Channel 0 Ping-Pong Mode Status Flag hit							

bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit

1 = DMA0STB register is selected

0 = DMA0STA register is selected

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
ROI	DOZE2 ⁽³⁾	DOZE1 ⁽³⁾	DOZE0 ⁽³⁾	DOZEN ^(1,4)	FRCDIV2	FRCDIV1	FRCDIV0	
bit 15							bit 8	
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PLLPOST1	PLLPOST0	—	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt b will clear the E will have no et	it OOZEN bit ffect on the D0	DZEN bit				
bit 14-12	DOZE<2:0>:	Processor Clo	ck Reduction	Select bits ⁽³⁾				
	111 = FCY divided by 128 110 = FCY divided by 64 101 = FCY divided by 32 100 = FCY divided by 16 011 = FCY divided by 8 (default) 010 = FCY divided by 4 001 = FCY divided by 2 2000 = FCY divided by 4							
bit 11	DOZEN: Doz	e Mode Enable	e bit ^(1,4)					
	1 = DOZE<2: 0 = Processo	0> field specifier r clock and per	es the ratio be ipheral clock i	etween the peri ratio are forced	pheral clocks a to 1:1	nd the process	or clocks	
bit 10-8	FRCDIV<2:0:	>: Internal Fast	RC Oscillator	Postscaler bit	5			
	8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits 111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 4 001 = FRC divided by 2 000 = FRC divided by 1 (default)							
bit 7-6	PLLPOST<1:	:0>: PLL VCO	Output Divide	r Select bits (al	so denoted as '	N2', PLL posts	caler)	
	11 = Output o 10 = Reserve 01 = Output o 00 = Output o	livided by 8 d livided by 4 (de livided by 2	efault)					
bit 5	Unimplemen	ted: Read as '	0'					
Note 1: Th 2: Th 3: Th DC	is bit is cleared is register resets e DOZE<2:0> b DZE<2:0> are ig	when the ROI I s only on a Pov its can only be nored.	bit is set and a ver-on Reset written to whe	an interrupt occ (POR). en the DOZEN	urs. bit is clear. If D ⁱ	OZEN = 1, any	writes to	

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

		DAMA					
	T4MD	TSIVID	I ZIVID	TIMD	QEIIMD	PVVIVIIVID	
							DIL O
R/W-0	R/W-0	R/W-0	R/W-0	R/W/-0	R/W-0	R/W-0	R/W-0
12C1MD			SPI2MD	SPI1MD	C2MD ⁽¹⁾		
bit 7	OZIND			GITTIND	OLIND	0 mile	bit 0
							5100
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	T5MD: Timer	5 Module Disab	le bit				
	1 = Timer5 m	odule is disable	d				
	0 = Timer5 m	odule is enable	d				
bit 14	T4MD: Timer4	4 Module Disab	le bit				
	1 = Timer4 meters	odule is disable	ed a				
hit 10	0 = 1 mer4 mer4		u la hit				
DIL 13	1 - Timor3 m	odulo is disable					
	0 = Timer3 m	odule is disable	d				
bit 12	T2MD: Timer2	2 Module Disab	le bit				
	1 = Timer2 m	odule is disable	d				
	0 = Timer2 m	odule is enable	d				
bit 11	T1MD: Timer	1 Module Disab	le bit				
	1 = Timer1 m	odule is disable	d				
	0 = limer1 m	odule is enable	d				
bit 10		11 Module Disa	ble bit				
	1 = QEI1 mod 0 = QEI1 mod	lule is disabled					
bit 9	PWMMD: PW	/M Module Disa	able bit				
	1 = PWM mod	dule is disabled					
	0 = PWM mod	dule is enabled					
bit 8	DCIMD: DCI I	Module Disable	bit				
	1 = DCI modu	le is disabled					
bit 7		1 Module Disah	le hit				
bit i	$1 = 12C1 \mod 1$	ule is disabled					
	$0 = 12C1 \mod$	ule is enabled					
bit 6	U2MD: UART	2 Module Disal	ole bit				
	1 = UART2 m	odule is disable	ed				
	0 = UART2 m	odule is enable	ed				
bit 5	U1MD: UART	1 Module Disal	ole bit				
	1 = UART1 m	odule is disable	ed				
			iu iii				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: These bits are available on dsPIC33EPXXXGM6XX/7XX devices only.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				CSCK2R<6:0	>						
bit 15	·						bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				CSDIR<6:0>							
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown					
bit 15	Unimpleme	ented: Read as '	0'								
bit 14-8	CSCK2R<6 (see Table 1	:0>: Assign DCI 1-2 for input pin	Clock Input (selection nu	(CSCK) to the C mbers)	Corresponding	RPn Pin bits					
	1111100 =	Input tied to RPI	124								
	•										
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	Input tied to Vss	3								
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-0	CSDIR<6:0	>: Assign DCI D	ata Input (CS	DI) to the Corre	sponding RP	n Pin bits					
	(see Table 1	(see Table 11-2 for input pin selection numbers)									
	1111100 =	Input tied to RPI	124								
	•										
	•										
	0000001 =	Input tied to CM	P1								
	0000000 =	Input tied to Vss	6								

REGISTER 11-18: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

REGISTER 11-34: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP43R<5:0>						
bit 15		·					bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP42R	<5:0>				
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown			
bit 15-14	Unimpleme	ented: Read as '	0'						
bit 13-8	RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits								

Unimplemented: Read as '0'
RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

(see Table 11-3 for peripheral function numbers)

REGISTER 11-35: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP49R<5:0>						
bit 15		·					bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP48R	<5:0>				
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
<u></u>									
1 11 A E A A			~ '						

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 11-3 for peripheral function numbers)

NOTES:

REGISTER 16-2: PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	PCLKDIV<2:0>(1)			
bit 7				bit				
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved
- 110 = Divide-by-64
- 101 = Divide-by-32
- 100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	IFLTMOD: Inc 1 = Independ 0 = Independ	dependent Fau dent Fault mode	It Mode Enabled	le bit			
bit 14-10	CLSRC<4:0> 11111 = Faul 1110 = Res	Amp/Comparat hparator 4 Amp/Comparat Amp/Comparat Amp/Comparat Amp/Comparat Amp/Comparat It 8 It 7 It 6 It 5 It 4 It 3 It 2 It 1 Amp/Comparat	Control Signa or 5 or 3 or 2 or 1	al Source Sele	ct for the PWM>	Generator # b	its
bit 9	CLPOL: Curr 1 = The selec 0 = The selec	ent-Limit Polari cted current-lim cted current-lim	ity for PWMx (it source is ac it source is ac	Generator # bit tive-low tive-high	₍ (1)		
bit 8	CLMOD: Cur 1 = Current-L 0 = Current-L	rent-Limit Mode imit mode is er imit mode is dis	e Enable for P nabled sabled	WMx Generat	or # bit		

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 21-10: C	CREATER OF SECONDARY CONFIGURATION REGISTER 2
-------------------	--

							n
U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	WAKFIL		—	—	SEG2PH2	SEG2PH1	SEG2PH0
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2 PRSEG1		PRSEG0
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15	Unimplemen	ted: Read as '	כ'				
bit 14	WAKFIL: Sele	ect CAN Bus L	ine Filter for V	Vake-up bit			
	1 = Uses CAN	N bus line filter	for wake-up				
bit 13-11		ted: Read as '	n'	-up			
bit 10-8	SEG2PH-2.0	- Phase Sean	nent 2 hits				
bit 10-0	111 = 1 enoth	is 8 x To					
	•						
	•						
	• $000 = 1$ on ath	is 1 v To					
hit 7		BixiQ Bhasa Sagmar	nt 2 Timo Solo	ot bit			
	1 = Ereely pro	rnase Seymer					
	0 = Maximum	of SEG1PHx b	oits or Informa	tion Processin	ıg Time (IPT), w	hichever is gre	ater
bit 6	SAM: Sample	e of the CAN Bu	us Line bit			-	
	1 = Bus line is	s sampled three	e times at the	sample point			
	0 = Bus line is	s sampled once	e at the sample	e point			
bit 5-3	SEG1PH<2:0	>: Phase Segn	nent 1 bits				
	111 = Length	is 8 x Tq					
	•						
	•						
	000 = Length	is 1 x Tq					
bit 2-0	PRSEG<2:0>	: Propagation	Time Segmen	t bits			
	111 = Length	is 8 x TQ					
	•						
	•						
	000 = Length	is 1 x Tq					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26 ⁽¹⁾	CSS25 ⁽¹⁾	CSS24 ⁽¹⁾
bit 15							bit 8
	5444.0	D 444 A	DAMA	D #44 0	5444.0	D 444 0	D 444 A
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
DIT 7							Dit U
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unki	nown
bit 15	CSS31: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 14	CSS30: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 13	CSS29: ADC	x Input Scan Se	election bits				
	1 = Selects A	Nx for input sca	an				
	0 = Skips AN	x for input scan					
bit 12	CSS28: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 11	CSS27: ADC	x Input Scan Se	election bit				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 10	CSS26: ADC	x Input Scan Se	election bit ⁽¹⁾				
	1 = Selects C 0 = Skips OA	A3/AN6 for inp 3/AN6 for input	ut scan scan				
bit 9	CSS25: ADC	x Input Scan Se	election bit ⁽¹⁾				
	1 = Selects C	A2/AN0 for inp	ut scan				
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	x Input Scan Se	election bit ⁽¹⁾				
	1 = Selects C 0 = Skips OA	A1/AN3 for inp 1/AN3 for input	ut scan scan				
bit 7	CSS23: ADC	x Input Scan Se	election bit				
	1 = Selects A	Nx for input sca	an				
	0 = Skips AN	x for input scan					
bit 6	CSS22: ADC	x Input Scan Se	election bits				
	1 = Selects A 0 = Skips AN	Nx for input sca x for input scan	an				
bit 5	CSS21: ADC	x Input Scan Se	election bits				
	1 = Selects A	Nx for input sca	an				
		x ior input scan					
Note 1. If th	ne on amn is se	lected (OPMOI	OF hit (CMxC(N < 10 > 1 = 1	the OAx input is	s used: otherw	ise the ANx

REGISTER 23-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾

- **Note 1:** If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

bit 3-0	Step Command	OPTION<3:0>	Option Description					
	PTGWHI(1)	0000	PWM Special Event Trigger					
	or (1)	0001	PWM master time base synchronization output					
	PTGWLO("	0010	PWM1 interrupt					
		0011	PWM2 interrupt					
		0100	PWM3 interrupt					
		0101	PWM4 interrupt					
		0110	PWM5 interrupt					
		0111	OC1 Trigger Event					
		1000	OC2 Trigger Event					
		1001	IC1 Trigger Event					
		1010	CMP1 Trigger Event CMP2 Trigger Event					
		1011						
		1100	CMP3 Trigger Event					
		1101	CMP4 Trigger Event					
		1110	ADC conversion done interrupt					
		1111	INT2 external interrupt					
	PTGIRQ(1)	0000	Generate PTG Interrupt 0					
		0001	Generate PTG Interrupt 1					
		0010	Generate PTG Interrupt 2					
		0011	Generate PTG Interrupt 3					
		0100	Reserved					
		•	•					
		•	•					
		1111	Reserved					
	PTGTRIG ⁽²⁾	00000	PTGO0					
		00001	PTGO1					
		•	•					
		•	•					
		•						
		11110	PTGO30					
		11111	PTGO31					

TABLE 25-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	•
	•
	0001 = 1:2
	0000 = 1:1
WDTWIN<1:0>	Watchdog Timer Window Select bits
	11 = WDT Window is 25% of WDT Period
	10 = WDT Window is 37.5% of WDT Period
	01 = WDT Window is 50% of WDT Period
ALTI2C1	Alternate I2C1 Pins bit
	I = I2C1 is mapped to the ASDA1/SCL1 pins
	Alternate I2C2 Bins hit
ALTIZOZ	Alternate I2C2 First bit $1 - 12C2$ is manned to the SDA2/SCL2 pins
	0 = 12C2 is mapped to the ASDA2/ASCI 2 pins
BOREN	Brown-out Reset (BOR) Detection Enable bit
Donen	1 = BOR is enabled
	0 = BOR is disabled
JTAGEN	JTAG Enable bit
	1 = JTAG is enabled
	0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicates on PGEC1 and PGED1
	10 = Communicates on PGEC2 and PGED2
	01 = Communicates on PGEC3 and PGED3
	ou - Reserved, du not de

TABLE 30-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: The Two-Speed Start-up is not enabled when EC mode is used since the EC clocks will be ready immediately.

32.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

32.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

TABLE 33-37:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

				Standard Operating Conditions: 3.0V to 3.6V						
		TICS	(unless otherwise stated)							
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
	1	1			-40°	$C \le TA \le$	+125°C for Extended			
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions			
SP70	FscP	Maximum SCKx Input Frequency	—		11	MHz	(Note 3)			
SP72	TscF	SCKx Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)			
SP73	TscR	SCKx Input Rise Time	—		-	ns	See Parameter DO31 (Note 4)			
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 (Note 4)			
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 (Note 4)			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		-	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns				
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	—	ns				
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10		50	ns	(Note 4)			
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	—	ns	(Note 4)			
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns				

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-24: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 33-41: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

АС СНА	RACTERIS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—	_	25	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	-	-		ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	-	-		ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—		ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

35.2 Package Details

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Lead Pitch	е		0.80 BSC			
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.30	0.37	0.45		
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

NOTES: