

Welcome to E-XFL.COM

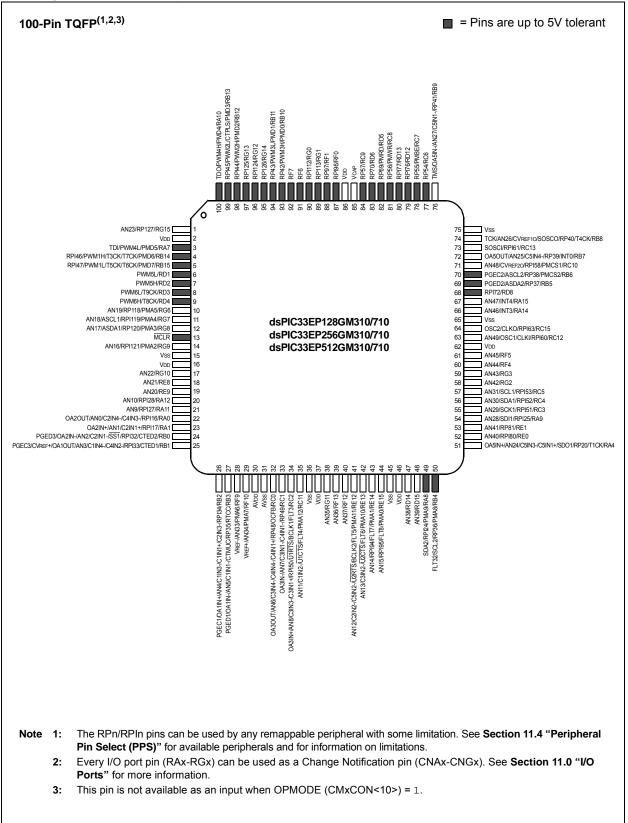
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm304-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

Pin Diagrams (Continued)

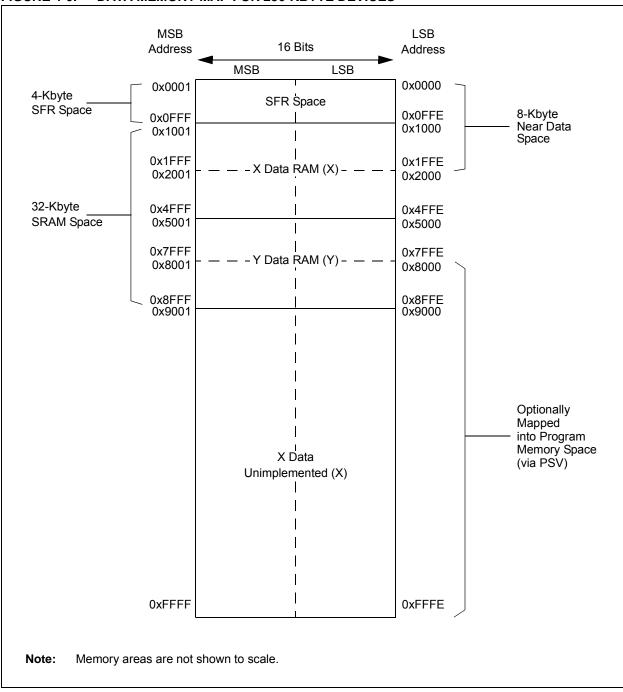


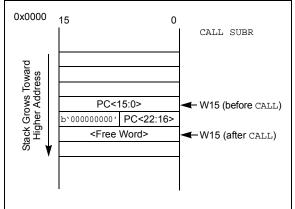
FIGURE 4-6: DATA MEMORY MAP FOR 256-KBYTE DEVICES

4.3.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGM3XX/6XX/7XX devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.


The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-13 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-13. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain the Software Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a 'C' development environment

FIGURE 4-13: C.

CALL STACK FRAME

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-66 form the basis of the addressing modes optimized to support the specific features of the individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

REGISTER 7-1: SI	R: CPU STATUS REGISTER ⁽¹⁾
------------------	---------------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bi	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

			(1)
REGISTER 11-42:	RPOR12: PERIPHERAL	PIN SELECT OUTPUT	REGISTER 12 ⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
-	-			RP127R	-			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP126R	<5:0>			
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleare	ed	x = Bit is unkr	nown	
bit 15-14	Unimplem	ented: Read as '	0'					
bit 13-8		:0>: Peripheral C 11-3 for periphera	•	on is Assigned to F mbers)	RP127 Outp	ut Pin bits		
bit 7-6	Unimplem	ented: Read as '	0'					
bit 5-0		RP126R<5:0>: Peripheral Output Function is Assigned to RP126 Output Pin bits (see Table 11-3 for peripheral function numbers)						

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD			
bit 15							bit 8			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0			
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15 bit 14-10	1 = Independ 0 = Independ	dependent Fau lent Fault mode lent Fault mode : Current-Limit	e is enabled e is disabled		t for the PWM	< Generator # b	its			
	CLSRC<4:0>: Current-Limit Control Signal Source Select for the PWMx Generator # bits 11111 = Fault 32 11110 = Reserved									
	•									
	01011 = Com 01010 = Op A 01001 = Op A 01000 = Op A 00111 = Faul 00101 = Faul 00101 = Faul 00011 = Faul 00010 = Faul 00001 = Faul 00000 = Faul	Amp/Comparat Amp/Comparat Amp/Comparat It 8 It 7 It 6 It 5 It 4 It 3 It 2 It 1	or 3 or 2 or 1		(1)					
bit 9	1 = The selec	ent-Limit Polari ted current-lim ted current-lim	it source is ac	tive-low	(1)					
bit 8	 0 = The selected current-limit source is active-high CLMOD: Current-Limit Mode Enable for PWMx Generator # bit 1 = Current-Limit mode is enabled 0 = Current-Limit mode is disabled 									

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	_	_	_	_		_	
bit 15		b						
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
—	—	—			DNCNT<4:0>			
bit 7		bit 0						
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as 'o	כ'					
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits				
	10010-11111	L = Invalid sele	ction					
	10001 = Com	npare up to Dat	a Byte 3, bit 6	6 with EID<17>	•			
	•							
	•							
	•							
	00001 = Compare up to Data Byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes							

REGISTER 21-2: CxCTRL2: CANx CONTROL REGISTER 2

BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-8 Byte 7<15:8>: CANx Message Byte 7

bit 7-0 Byte 6<7:0>: CANx Message Byte 6

BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—			FILHIT<4:0>(1)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
VCFG2 ⁽¹⁾	VCFG1 ⁽¹) VCFG0 ⁽¹⁾	OFFCAL	_	CSCNA	CHPS1	CHPS0	
bit 15							bit 8	
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable bit	:	U = Unimp	lemented bit, rea	ad as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
					(1)			
bit 15-13	VCFG<2:0	>: Converter Voltag	e Reference	Configuratio	on bits()			
	Value	VREFH	VREFL					
	000	Avdd	Avss					
	001	External VREF+(2)	Avss					
	001 010	External VREF+ ⁽²⁾ AVDD	Avss External VR	_{EF-} (2)				

REGISTER 23-2: ADxCON2: ADCx CONTROL REGISTER 2

1 = + and – inputs of channel Sample-and-Hold are connected to AVss

0 = + and – inputs of channel Sample-and-Hold are normal

- bit 11 Unimplemented: Read as '0'
- bit 10 CSCNA: Input Scan Select bit
 - 1 = Scans inputs for CH0+ during Sample MUXA

0 = Does not scan inputs

bit 9-8 CHPS<1:0>: Channel Select bits

In 12-Bit Mode (AD12B = 1), CHPS<1:0> Bits are Unimplemented and are Read as '00':

- lx = Converts CH0, CH1, CH2 and CH3
- 01 = Converts CH0 and CH1
- 00 = Converts CH0
- bit 7 **BUFS:** Buffer Fill Status bit (only valid when BUFM = 1)
 - 1 = ADCx is currently filling the second half of the buffer; the user application should access data in the first half of the buffer
 - 0 = ADCx is currently filling the first half of the buffer; the user application should access data in the second half of the buffer
- **Note 1:** The '001', '010' and '011' bit combinations for VCFG<2:0> are not applicable on ADC2.
 - 2: ADC2 does not support external VREF± inputs.

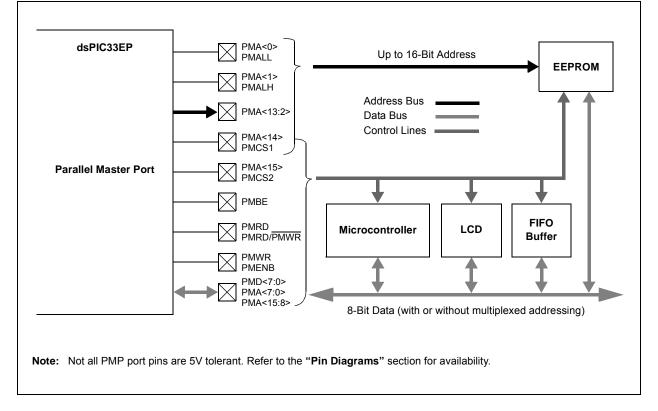
REGISTER 23-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾ (CONTINUED)

bit 4	CSS20: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 3	CSS19: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 2	CSS18: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 1	CSS17: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 0	CSS16: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan

- **Note 1:** If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

NOTES:

28.0 PARALLEL MASTER PORT (PMP)


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Parallel Master Port (PMP)" (DS70576), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

REGISTER 28-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER	REGISTER 28-6:	PADCFG1: PAD CONFIGURATION CONTROL REGISTER
--	----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15		•				• •	bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
_		—	—	—	—	RTSECSEL	PMPTTL	
bit 7		•					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-2 Unimplemented: Read as '0'

bit 1 Not used by the PMP module.

bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers

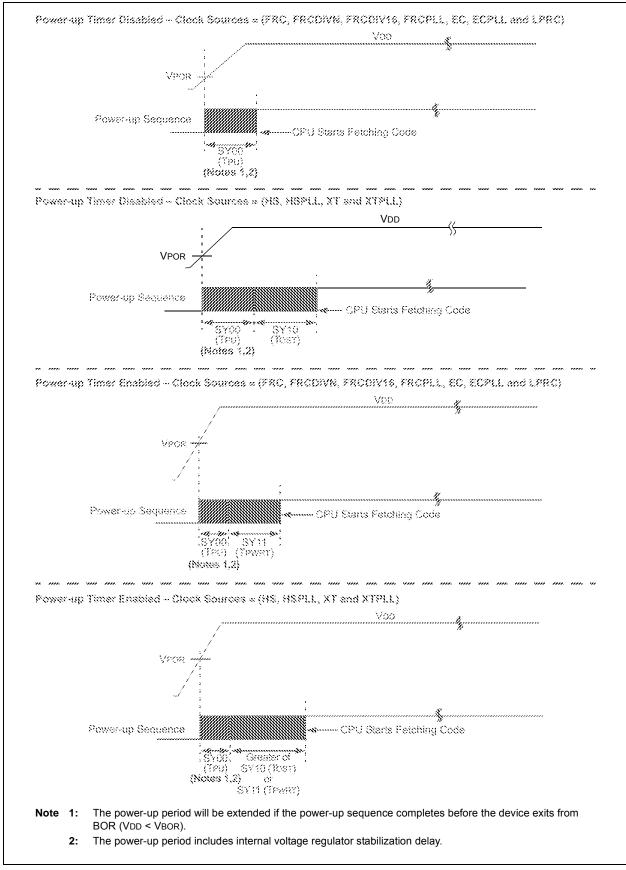
0 = PMP module uses Schmitt Trigger input buffers

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	•
	0001 = 1:2
	0001 = 1.2 0000 = 1.1
WDTWIN<1:0>	Watchdog Timer Window Select bits
-	11 = WDT Window is 25% of WDT Period
	10 = WDT Window is 37.5% of WDT Period
	01 = WDT Window is 50% of WDT Period
	00 = WDT Window is 75% of WDT Period
ALTI2C1	Alternate I2C1 Pins bit
	1 = I2C1 is mapped to the SDA1/SCL1 pins
	0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 Pins bit
	1 = I2C2 is mapped to the SDA2/SCL2 pins
	0 = I2C2 is mapped to the ASDA2/ASCL2 pins
BOREN	Brown-out Reset (BOR) Detection Enable bit
	1 = BOR is enabled
	0 = BOR is disabled
JTAGEN	JTAG Enable bit
	1 = JTAG is enabled
	0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicates on PGEC1 and PGED1
	10 = Communicates on PGEC2 and PGED2
	01 = Communicates on PGEC3 and PGED3
Note 4. The Two C	00 = Reserved, do not use

TABLE 30-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: The Two-Speed Start-up is not enabled when EC mode is used since the EC clocks will be ready immediately.

TABLE 33-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


DC CHARACT	ERISTICS		(unless oth	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Тур. ⁽²⁾	Max.	Units	Conditions						
Power-Down Current (IPD) ⁽¹⁾										
DC60d	35	100	μA	-40°C						
DC60c	40	200	μA	+25°C	3.3V	Read Device Device Current				
DC60b	250	500	μA	+85°C	3.3V	Base Power-Down Current				
DC60c	1000	2500	μA	+125°C						
DC61d	8	10	μA	-40°C						
DC61c	10	15	μA	+25°C	0.01/	Watchdog Timer Current: ΔIwDT ⁽³⁾				
DC61b	12	20	μA	+85°C	3.3V					
DC61c	13	25	μA	+125°C						

Note 1: IPD (Sleep) current is measured as follows:

CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with
 external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
 ITAC is disabled
- JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.
- **3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

FIGURE 33-5: POWER-ON RESET TIMING CHARACTERISTICS

AC CHARACTERISTICS			Standard Operating Conditions (see Note 1): 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min.	Тур.	-40 C	≤ IA ≤ + Units	Conditions			
Device Supply										
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of: VDD + 0.3 or 3.6	V				
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V				
		·	Reference	ce Inpu	ts		·			
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVDD	V	(Note 1) VREFH = VREF+, VREFL = VREF-			
AD05a			3.0	_	3.6	V	VREFH = AVDD, VREFL = AVSS = 0			
AD06	VREFL	Reference Voltage Low	AVss		AVDD - 2.7	V	(Note 1)			
AD06a			0		0	V	VREFH = AVDD, VREFL = AVSS = 0			
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	VREF = VREFH – VREFL			
AD08	IREF	Current Drain	_		10 600	μΑ μΑ	ADC off ADC on			
AD09	Iad	Operating Current	—	5	—	mA	ADC operating in 10-bit mode (Note 1)			
			—	2		mA	ADC operating in 12-bit mode (Note 1)			
			Analog	g Input						
AD12	Vinh	Input Voltage Range, Vinn	VINL	_	Vrefh	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input			
AD13	VINL	Input Voltage Range, ViNL	VREFL	_	AVss + 1V	V	This voltage reflects Sample-and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input			
AD17	RIN	Recommended Impedance of Analog Voltage Source	_		200	Ω	Impedance to achieve maximum performance of ADC			

TABLE 33-56: ADCx MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
ADC Accuracy (12-Bit Mode) ⁽¹⁾										
HAD20a	Nr	Resolution ⁽³⁾	1:	2 Data B	its	bits				
HAD21a	INL	Integral Nonlinearity	-6	_	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD22a	DNL	Differential Nonlinearity	-1	—	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23a	Gerr	Gain Error	-10	_	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
		Dynamic I	Performa	nce (12-	Bit Mode	e) ⁽²⁾	-			
HAD33a	Fnyq	Input Signal Bandwidth	_	—	200	kHz				

TABLE 34-14: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

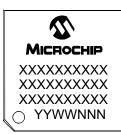
Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 34-15: ADCx MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min Typ Max		Units	Conditions				
ADC Accuracy (10-Bit Mode) ⁽¹⁾										
HAD20b	Nr	Resolution ⁽³⁾	10) Data B	its	bits				
HAD21b	INL	Integral Nonlinearity	-1.5	—	1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD22b	DNL	Differential Nonlinearity	-0.25		0.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD24b	EOFF	Offset Error	-1.25		1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
		Dynamic F	Performa	nce (10-	Bit Mode	e) ⁽²⁾				
HAD33b	Fnyq	Input Signal Bandwidth		_	400	kHz				


Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

35.1 Package Marking Information (Continued)

64-Lead TQFP (10x10x1 mm)

Example


100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

121-Lead TFBGA (10x10x1.1 mm)

Example

Example

NOTES: