

Welcome to E-XFL.COM

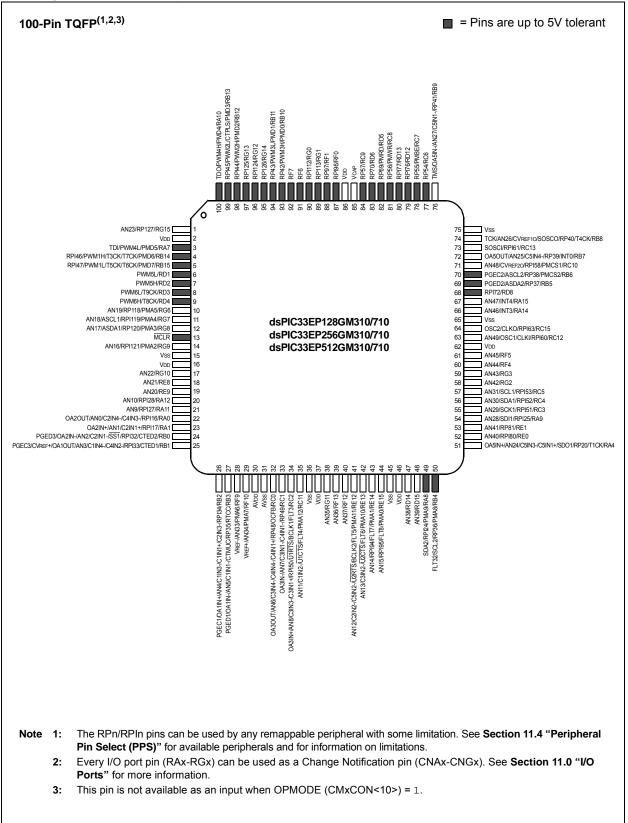
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI


Betunio	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm304-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

Pin Diagrams (Continued)

TABLE 4-23: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

								- , , -										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	_	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	—	CANCAP	-	—	WIN	0480
C1CTRL2	0402	_		_	_	_	_	_	_	_	_	_			DNCNT<4:0>		-	0000
C1VEC	0404	_		_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0040
C1FCTRL	0406	DMABS2	DMABS1	DMABS0	—			—	—	—	—	_	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C1FIFO	0408	_		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	—	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C1INTF	040A	_		TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_		—	—			—	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C1CFG1	0410	_		—	—			—	—	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C1CFG2	0412	_	WAKFIL	—	—		SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C1FEN1	0414								FLTE	N<15:0>								FFFF
C1FMSKSEL1	0418	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C1FMSKSEL2	041A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-24: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							Se	e definition	when WIN :	×							
C1RXFUL1	0420								RXFUL	<15:0>								0000
C1RXFUL2	0422			RXFUL<31:16> 0000														
C1RXOVF1	0428			RXOVF<15:0> 0000														
C1RXOVF2	042A								RXOVF	<31:16>								0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	xxxx
C1RXD	0440		CAN1 Receive Data Word xxxx											xxxx				
C1TXD	0442							C	AN1 Transn	nit Data Wo	rd							xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-35: NVM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0728	WR	WREN	WRERR	NVMSIDL		—	RPDF	URERR	-	-		_	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMADR	072A								NVMAD	R<15:0>								0000
NVMADRU	072C	_	_	_	_	_	_	_	_				NVMAD	RU<23:16>				0000
NVMKEY	072E	_	_	_	_	_	_	_	_				NVM	(EY<7:0>				0000
NVMSRCADRL	0730							NVMS	SRCADR<	15:1>							0	0000
NVMSRCADRH	0732												NVMSRCA	ADRH<23:1	6>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		—	VREGSF		СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	0030
PLLFBD	0746	_	_	_	—			—				PL	LDIV<8:0>					0030
OSCTUN	0748	_	_		_			_						TUN	<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

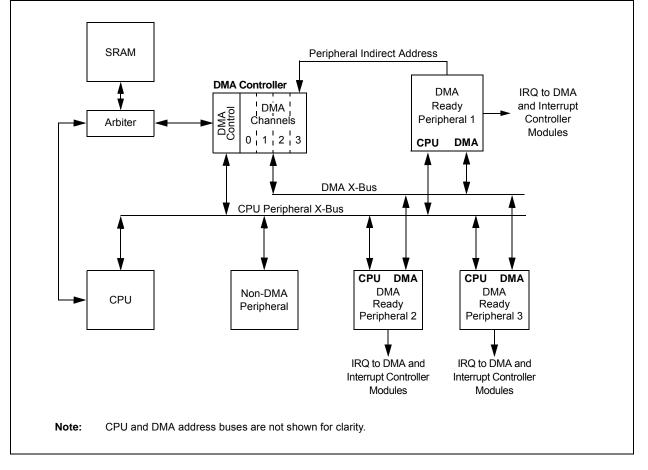
Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the configuration fuses.

TABLE 4-37: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)

- bit 3-0 NVMOP<3:0>: NVM Operation Select bits^(1,3,4)
 - 1111 = Reserved
 - 1110 = Reserved
 - 1101 = Bulk erase primary program Flash memory
 - 1100 = Reserved
 - 1011 = Reserved
 - 1010 = Reserved
 - 0011 = Memory page erase operation
 - 0010 = Memory row program operation with source data from RAM
 - 0001 = Memory double-word program operation⁽⁵⁾
 - 0000 = Reserved
- Note 1: These bits can only be reset on POR.
 - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
 - **3:** All other combinations of NVMOP<3:0> are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
 - 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

		•	•
Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
CAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	—
CAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)
CAN2 – RX Data Ready	00110111	0X0540(C2RXD)	—
CAN2 – TX Data Request	01000111	—	0X0542(C2TXD)
DCI – Codec Transfer Done	00111100	0X0290(RXBUF0)	0X0298(TXBUF0)
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	_
ADC2 – ADC2 Convert Done	00010101	0X0340(ADC2BUF0)	—
PMP – PMP Data Move	00101101	0X0608(PMPDAT1)	0X0608(PMPDAT1)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS (CONTINUED)

FIGURE 8-2: DMA CONTROLLER BLOCK DIAGRAM

REGISTER 11-9: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12
--

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FX/VV-0	N/W-0	F\/VV-U	FLT2R<6:0>	N/W-U	N/W-0	FV/VV-U
 bit 15				1 2121(<0.02			bit 8
							DILO
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT1R<6:0>			
bit 7							bit 0
Legend: R = Readabl	e hit	W = Writable	hit	U = Unimplen	nented hit rea	ad as 'N'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	NOWD
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8		Assign PWM I -2 for input pin) to the Corresp nbers)	onding RPn F	Pin bits	
	1111100 = I r	nput tied to RPI	124				
	•						
	•						
	0000001 = lr	nput tied to CM	P1				
		nput tied to Vss					
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	(see Table 11	Assign PWM I -2 for input pin nput tied to RPI	selection nun) to the Corresp nbers)	onding RPn F	Pin bits	
	•						
		nput tied to CM nput tied to Vss					

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS70362), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as eight independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 and Timer8 are the least significant word (Isw); Timer3, Timer5, Timer7 and Timer9 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON register control bits are ignored. Only T2CON, T4CON, T6CON and T8CON register control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Timer7 and Timer9 interrupt flags.

A block diagram for an example of a 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

13.1 Timer Control Registers

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON AND T8CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON		TSIDL	—	—	_	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32	_	TCS ⁽¹⁾	_
bit 7							bit 0
Legend:							
R = Readable b		W = Writable		•	nented bit, rea		
-n = Value at P0	DR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
		0.1.1					
	TON: Timerx						
	When T32 = 1 1 = Starts 32-						
	0 = Stops 32-						
	When T32 =						
	1 = Starts 16-						
bit 14	0 = Stops 16-	ted: Read as '	o'				
	-	x Stop in Idle M					
bit 15		ues module op		device enters l	dle mode		
		s module opera					
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time	erx Gated Time	Accumulation	Enable bit			
	When TCS =						
	This bit is igno						
	When TCS = 1 = Gated tim	<u><i>u.</i></u> le accumulatior	n is enabled				
		e accumulation					
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit				
	1 = Timerx an	nd Timery form	a single 32-bi	t timer			
		nd Timery act a		ners			
		ted: Read as '					
		Clock Source S					
		clock is from pir	n, TxCK (on th	e rising edge)			
	0 = Internal cl						
bit 0		ted: Read as '	n'				

U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ____ ____ **BLANKSEL3 BLANKSEL2** BLANKSEL1 **BLANKSEL0** ____ ____ bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHOPSEL2 CHOPSEL1 CHOPHEN CHOPSEL3 CHOPSEL0 CHOPLEN _ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared '1' = Bit is set x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as state blank source 0010 = PWM2H is selected as state blank source 0001 = PWM1H is selected as state blank source 0000 = No state blanking bit 7-6 Unimplemented: Read as '0' bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits The selected signal will enable and disable (CHOP) the selected PWMx outputs. 1001 = Reserved 0110 = PWM6H is selected as state blank source 0101 = PWM5H is selected as state blank source 0100 = PWM4H is selected as state blank source 0011 = PWM3H is selected as CHOP clock source 0010 = PWM2H is selected as CHOP clock source 0001 = PWM1H is selected as CHOP clock source 0000 = Chop clock generator is selected as CHOP clock source bit 1 CHOPHEN: PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

REGISTER 16-24: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Quadrature Encoder Interface (QEI)" (DS70601) which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- · 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High Register
- 32-Bit Position Compare Low Register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- · External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEIx block diagram.

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices contains two Inter-Integrated Circuit (I^2C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface. The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I^2C module offers the following key features:

- I²C Interface Supporting both Master and Slave modes of Operation.
- I²C Slave mode Supports 7 and 10-Bit Addressing.
- I²C Master mode Supports 7 and 10-Bit Addressing.
- I²C Port Allows Bidirectional Transfers Between Master and Slaves.
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control).
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly.
- Intelligent Platform Management Interface (IPMI)
 Support
- System Management Bus (SMBus) Support

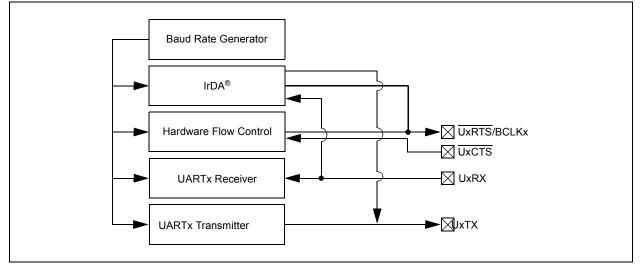
20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices contains four UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGM3XX/6XX/7XX device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

Note: Hardware flow control using UxRTS and UxCTS is not available on all pin count devices. See the "Pin Diagrams" section for availability.


The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop Bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for All UART Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTx SIMPLIFIED BLOCK DIAGRAM

© 2013-2014 Microchip Technology Inc.

NOTES:

REGISTER 23-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)

bit 6-2	SMPI<4:0>: Increment Rate bits
	When ADDMAEN = 0:
	x1111 = Generates interrupt after completion of every 16th sample/conversion operation
	x1110 = Generates interrupt after completion of every 15th sample/conversion operation
	•
	•
	x0001 = Generates interrupt after completion of every 2nd sample/conversion operation x0000 = Generates interrupt after completion of every sample/conversion operation
	When ADDMAEN = 1:
	11111 = Increments the DMA address after completion of every 32nd sample/conversion operation
	11110 = Increments the DMA address after completion of every 31st sample/conversion operation
	•
	•
	•
	00001 = Increments the DMA address after completion of every 2nd sample/conversion operation 00000 = Increments the DMA address after completion of every sample/conversion operation
bit 1	BUFM: Buffer Fill Mode Select bit
	1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt
	0 = Always starts filling the buffer from the Start address
bit 0	ALTS: Alternate Input Sample Mode Select bit
	1 = Uses channel input selects for Sample MUXA on the first sample and Sample MUXB on the next sample 0 = Always uses channel input selects for Sample MUXA
Note 1:	The '001', '010' and '011' bit combinations for VCFG<2:0> are not applicable on ADC2.

2: ADC2 does not support external VREF± inputs.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_		SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾
bit 15		·	•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7(2)	ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-13 bit 12-8	Unimplemen	ived from syste ted: Read as '(Auto-Sample T AD)'				
	• • 00001 = 1 TA 00000 = 0 TA	D					
bit 7-0	11111111 = • • • • • • • • • • • • • • • • • • •	ADCx Convers TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7: TP • (ADCS<7:	0> + 1) = TP • 0> + 1) = TP • 0> + 1) = TP •	256 = Tad 3 = Tad 2 = Tad			
	nis bit is only use nis bit is not usec		•	,	nd SSRCG (AD	1CON1<4>) =	0.

REGISTER 23-3: ADXCONS: ADCX CONTROL REGISTER 3	REGISTER 23-3:	ADxCON3: ADCx CONTROL REGISTER 3
---	----------------	----------------------------------

REGISTER 27-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	_	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
-----------	----------------------------

bit 10-8 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.

bit 7-6 Unimplemented: Read as '0'

- bit 5-4 **HRTEN<1:0>:** Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 29-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		X<3	31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		X<2	23:16>			
						bit 0
oit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			
	R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 R/W-0 X<2	X<31:24> R/W-0 R/W-0 X<23:16> Dit W = Writable bit U = Unimpler	X<31:24> $R/W-0 R/W-0 R/W-0 R/W-0$ $X<23:16>$ bit W = Writable bit U = Unimplemented bit, real	X<31:24> R/W-0 R/W-0 R/W-0 R/W-0 $X<23:16>$ bit W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

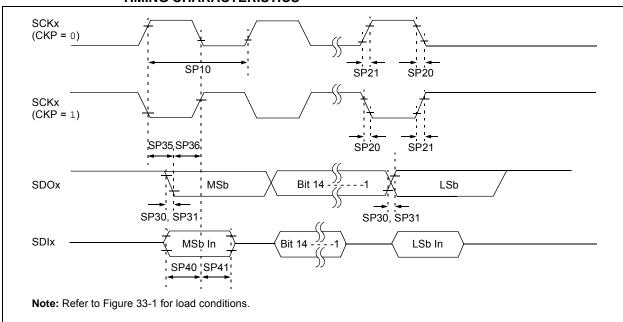
REGISTER 29-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
10.00-0	10,00-0	10.00-0	X<7:1>	10.00-0	10.00-0	10.00-0	_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

33.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGM3XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.


Absolute maximum ratings for the dsPIC33EPXXXGM3XX/6XX/7XX family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

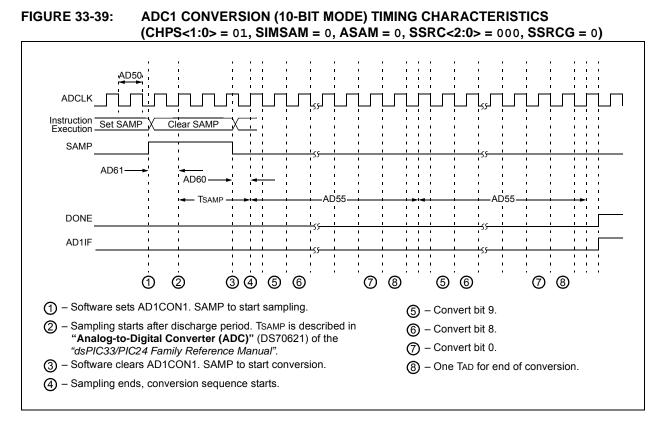
(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	-0.3V to +3.6V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	350 mA
Maximum current into Vod pin ⁽²⁾	350 mA
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	
Maximum current sourced/sunk by all ports ^(2,4)	200 mA

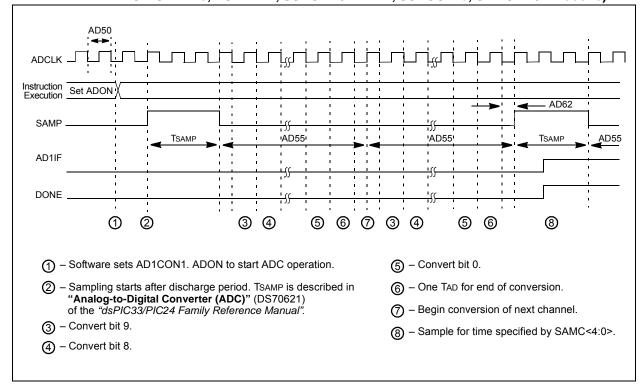
- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 33-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: RA3, RA4, RA7, RA9, RA10, RB7-RB15, RC3, RC15, RD1-RD4, which are able to sink 30 mA and source 20 mA.

FIGURE 33-18: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-35:SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS


АС СНА	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Conditions		
SP10	FscP	Maximum SCKx Frequency		—	9	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	_	—		ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-40: ADC1 CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

