

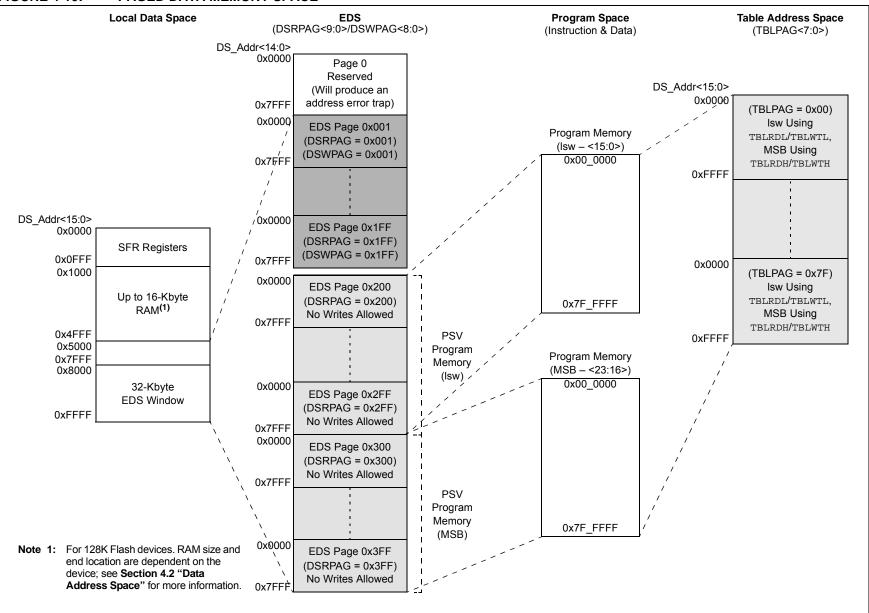
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm304t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms; it is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume							
	word-sized data (LSb of every EA is always							
	clear). The XB value is scaled accordingly to							
	generate compatible (byte) addresses.							

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo	Addressing	and	Bit-Rev	ersed					
	Addressi	Addressing can be enabled simultaneously								
	using the	using the same W register, but Bit-Reversed								
	Addressi	Addressing operation will always take								
	preceder	nce for data w	rites w	hen enab	led.					

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—		—	—	—	—	—	—		
bit 15							bit 8		
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
			NVMKI	EY<7:0>					
bit 7							bit 0		
Legend:									
R = Readable I	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'								

'0' = Bit is cleared

bit 15-8 Unimplemented: Read as '0'

-n = Value at POR

bit 7-0 NVMKEY<7:0>: NVM Key Register (write-only) bits

'1' = Bit is set

REGISTER 5-5: NVMSRCADRH: NONVOLATILE DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
NVMSRCADRH<23:16>									
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADRH<23:16>: Nonvolatile Data Memory Upper Address bits

x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	—	—	—	—	_	PLLDIV<8>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
			PLLD	IV<7:0>						
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	plemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-9	Unimplemer	nted: Read as '	o'							
bit 8-0	PLLDIV<8:0	>: PLL Feedbac	k Divisor bits	s (also denoted	as 'M', PLL mu	ltiplier)				
	111111111	= 513								
	•									
	•									
	•	000110000 = 50 (default)								
	•									
	•									
	•									
	00000010									
	000000001 000000000									
	000000000	- L								

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD ⁽¹⁾	PMPMD
bit 15							bit
DAALO	DAMA	DAALO	DAMA	D /// 0	D 444.0	DAALO	DANA
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCMD bit 7	DACMD	QEI2MD	PWM2MD	U3MD	I2C3MD	I2C2MD	ADC2MD
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	T9MD: Timer	9 Module Disab	le bit				
		odule is disable odule is enable					
bit 13	T8MD: Timer	8 Module Disab	le bit				
		odule is disable odule is enable					
bit 14	T7MD: Timer	7 Module Disab	le bit				
	-	odule is disable odule is enable					
bit 12	T6MD: Timer	6 Module Disab	le bit				
		odule is disable odule is enable					
bit 11	Unimplemen	ted: Read as 'd)'				
bit 10	CMPMD: Cor	nparator Modul	e Disable bit				
		tor module is di tor module is er					
bit 9	RTCCMD: RT	FCC Module Dis	sable bit ⁽¹⁾				
		odule is disable odule is enable					
bit 8	PMPMD: PMI	P Module Disat	ole bit				
		lule is disabled lule is enabled					
bit 7	CRCMD: CR	C Module Disat	ole bit				
		lule is disabled lule is enabled					
bit 6	DACMD: DAG	C Module Disat	ole bit				
		lule is disabled lule is enabled					
bit 5	QEI2MD: QE	I2 Module Disa	ble bit				
		dule is disabled dule is enabled					
bit 4	PWM2MD: P	WM2 Module D	isable bit				
		odule is disable odule is enable					

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

Note 1: The RTCCMD bit is not available on 44-pin devices.

Selec	eral Pin et Input er Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010	1001	I/O	RP41	101 0101	—	
010	1010	I/O	RP42	101 0110	—	—
010	1011	I/O	RP43	101 0111	—	—
101	1000	—	—	110 1100		—
101	1001	—	—	110 1101	—	—
101	1010	—	—	110 1110	—	—
101	1011	—	—	110 1111		—
101	1100	—	—	111 0000	I	RPI112
101	1101	—	—	111 0001	I/O	RP113
101	1110	I	RPI94	111 0010	—	
101	1111	I	RPI95	111 0011	—	—
110	0000	I	RPI96	111 0100	—	_
110	0001	I/O	RP97	111 0101	—	
110	0010	—	—	111 0110	I/O	RP118
110	0011	—	—	111 0111	I	RPI119
110	0100	—	_	111 1000	I/O	RP120
110	0101	—	—	111 1001	I	RPI121
110	0110	—	_	111 1010	—	_
110	0111	—	—	111 1011	—	
110	1000	—	—	111 1100	I	RPI124
110	1001	—	—	111 1101	I/O	RP125
110	1010	—		111 1110	I/O	RP126
110	1011	—		111 1111	I/O	RP127

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	_	_	
bit 15		·					bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				T2CKR<6:0>	>			
bit 7							bit 0	
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Unimplemer	ted: Read as '	0'					
bit 6-0		-: Assign Timer		. ,	he Correspondi	ng RPn pin bits	3	
	1111100 = 	nput tied to RP	124					
	•							
	•							

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2013-2014 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—		_	—		—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	OCFAR<6:0>									
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-7	Unimplemen	ted: Read as '	כ'							
bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)										
	1111100 = Input tied to RPI124									
	•									
	•									

REGISTER 11-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-9: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12
--

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	FX/VV-0	N/W-0	FX/VV-U	FLT2R<6:0>	N/W-U	N/W-0	FV/VV-U				
 bit 15				1 2121(<0.02			bit 8				
							DILO				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				FLT1R<6:0>							
bit 7							bit 0				
Legend: R = Readabl	e hit	W = Writable	hit	II = I Inimplen	nented hit rea	ad as 'N'					
-n = Value at		'1' = Bit is set		U = Unimplemented bit, rea '0' = Bit is cleared		x = Bit is unknown					
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-8		Assign PWM I -2 for input pin) to the Corresp nbers)	onding RPn F	Pin bits					
	1111100 = Input tied to RPI124										
	•										
	•										
	0000001 = Input tied to CMP1										
		nput tied to Vss									
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-0	(see Table 11	FLT1R<6:0>: Assign PWM Fault 1 (FLT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111100 = Input tied to RPI124									
	•										
		nput tied to CM nput tied to Vss									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN						
bit 15							bit				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL				
bit 7		20					bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15		H Rising Edge	Triggor Enabl	o hit							
JIL 15		• •			Blanking count	ter					
	 1 = Rising edge of PWMxH will trigger the Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores the rising edge of PWMxH 										
bit 14	PHF: PWMxH	H Falling Edge	Trigger Enab	le bit							
					e Blanking coun	ter					
	0 = Leading-Edge Blanking ignores the falling edge of PWMxH										
bit 13		Rising Edge			DI L'A						
				sing edge of PV	Blanking count	er					
bit 12		_uge blanking			VIVIAE						
					Blanking count	ter					
	Ų	0	00	alling edge of P	Ų						
bit 11		•	• •	anking Enable I							
				he selected Fail to the selected							
bit 10	CLLEBEN: C	Current-Limit Le	ading-Edge E	Blanking Enable	e bit						
				he selected cur to the selected	rrent-limit input I current-limit inj	put					
bit 9-6	Unimplemen	ted: Read as '	0'								
bit 5	BCH: Blankin	ng in Selected I	Blanking Sign	al High Enable	bit ⁽¹⁾						
		nking (of currer			nals) when seled	cted blanking s	ignal is high				
bit 4	BCL: Blankin	g in Selected E	Blanking Signa	al Low Enable b	_{Dit} (1)						
		nking (of currer			nals) when seled	cted blanking s	ignal is low				
bit 3	BPHH: Blanking in PWMxH High Enable bit										
		nking (of currer			nals) when PWN	/IxH output is h	igh				
bit 2	BPHL: Blanking in PWMxH Low Enable bit										
		nking (of currer			nals) when PWN	/IxH output is lo	W				
bit 1	BPLH: Blanki	ing in PWMxL	High Enable I	oit							
		nking (of currer			als) when PWN	/lxL output is hi	gh				
	0 = No blanki	ing when PWM	xL output is h	igh							
bit 0			-	-							

REGISTER 16-22: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER x

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

20.2 UART Control Registers

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾	0-0	USIDL	IREN ⁽²⁾	RTSMD	0-0	UEN1	UEN0	
bit 15	_	USIDE	INEN [®]	KT SIVID	_	UENT	bit	
							Dit	
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	
bit 7							bit	
Legend:		HC = Hardwar	e Clearable bit	t				
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown	
			(4)					
bit 15		ARTx Enable bit					<u> </u>	
		s enabled; all U, s disabled; all L						
	is minima			controlled by	I OIT lateries			
bit 14	Unimplemen	ted: Read as '0)'					
bit 13	USIDL: UARTx Stop in Idle Mode bit							
		nues module op		levice enters Id	le mode			
		es module opera						
bit 12	IREN: IrDA®	Encoder and De	ecoder Enable	bit ⁽²⁾				
	1 = IrDA enc	oder and decod	ler are enabled	1				
	0 = IrDA enc	oder and decod	ler are disabled	b				
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bit					
		in is in Simplex						
L:1 10	•	oin is in Flow Co						
bit 10	-	ted: Read as '0						
bit 9-8		JARTx Pin Enab						
		JxRX and BCLK JxRX, UxCTS a				controlled by PC	JRT latches	
		JxRX and UxRT				controlled by PO	ORT latches	
		nd UxRX pins a						
	PORT la	atches						
bit 7	WAKE: Wake	e-up on Start bit	Detect During	Sleep Mode E	nable bit			
		ontinues to sam			generated on	the falling edge	; bit is cleare	
		are on the follow -up is enabled	ving rising eag	e				
bit 6		ARTx Loopback	Mode Select h	it.				
	1 = Enables	nı,						
		k mode is disab						
Note 1: Ret	fer to the "de DU	C33/PIC24 Fam	ily Reference M	lanual" "Univa	real Asynchry	nous Possiva	r Transmitte	
		0582) for inform						
•		y available for th		•				
		y available on 4			- /-			
		y available on f						

4: This feature is only available on 64-pin devices.

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- bit 1-0 PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 10 = Single level detect with step delay is executed on exit of command
 - 01 = Continuous edge detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 00 = Continuous edge detect with step delay is executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - **2:** This bit is only used with the PTGCTRL Step command software trigger option.

27.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS70584), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module and its operation.

Some of the key features of this module are:

- · Time: Hours, Minutes and Seconds
- 24-Hour Format (military time)
- · Calendar: Weekday, Date, Month and Year
- Alarm Configurable
- Year Range: 2000 to 2099
- Leap Year Correction
- BCD Format for Compact Firmware
- · Optimized for Low-Power Operation
- User Calibration with Auto-Adjust
- Calibration Range: ±2.64 Seconds Error per Month
- Requirements: External 32.768 kHz Clock Crystal
- Alarm Pulse or Seconds Clock Output on RTCC Pin

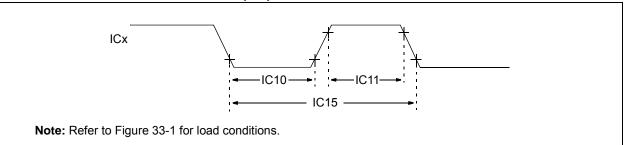
The RTCC module is intended for applications where accurate time must be maintained for extended periods with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

REGISTER 27-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

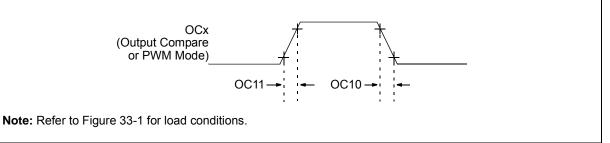

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.
- bit 11-8 **MTHONE<3:0>:** Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.
- **Note 1:** A write to this register is only allowed when RTCWREN = 1.

FIGURE 33-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS


TABLE 33-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	(unless otherwis	Standard Operating Conditions: 3.0V to 3.6V unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions			
IC10	TccL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15			
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = Prescale value (1, 4, 16)		
IC15	TccP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50		ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

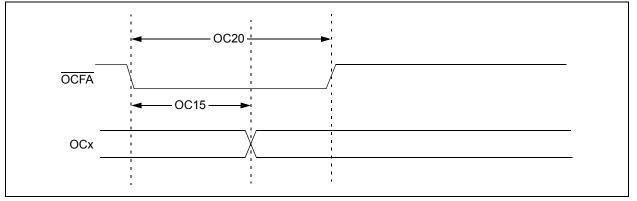


TABLE 33-26: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
OC10	TccF	OCx Output Fall Time				ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See Parameter DO31		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

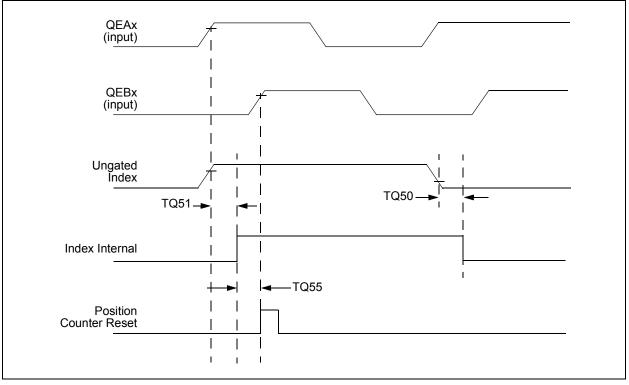
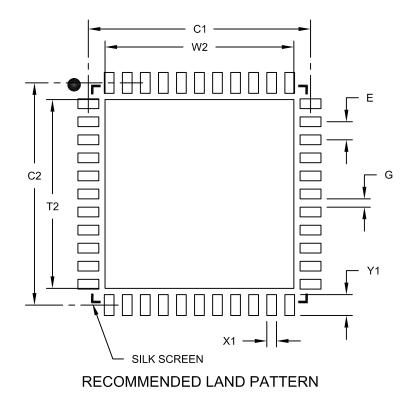


TABLE 33-27: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHAF	RACTERIS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC15	TFD	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 33-31: QEIX INDEX PULSE TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Max.		Units	Conditions	
TQ50	TqIL	Filter Time to Recognize Low with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize High with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 TCY	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEAx and QEBx is shown for Position Counter Reset timing only. Shown for forward direction only (QEAx leads QEBx). Same timing applies for reverse direction (QEAx lags QEBx) but index pulse recognition occurs on falling edge.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

AUXCONx (PWMx Auxiliary Control)254
CHOP (PWMx Chop Clock Generator)241
CLKDIV (Clock Divisor)
CM4CON (Op Amp/Comparator 4 Control)
CMSTAT (Op Amp/Comparator Status)
CMxCON (On Amn/Comparator x
Control, $x = 1, 2, 3 \text{ or } 5$)
CMxFLTR (Comparator x Filter Control)
CMxMSKCON (Comparator x Mask
Gating Control)
CMxMSKSRC (Comparator x Mask Source
Select Control)
CORCON (Core Control)
CRCCON1 (CRC Control 1)
CRCCON2 (CRC Control 2) 408
CRCXORH (CRC XOR Polynomial High)409
CRCXORL (CRC XOR Polynomial Low)
CTMUCON1 (CTMU Control Register 1)
CTMUCON2 (CTMU Control Register 2)
CTMUICON (CTMU Current Control)
CVR1CON (Comparator Voltage
Reference Control 1)
CVR2CON (Comparator Voltage
Reference Control 2)
CxBUFPNT1 (CANx Filters 0-3
Buffer Pointer 1)
CxBUFPNT2 (CANx Filters 4-7
Buffer Pointer 2)
CxBUFPNT3 (CANx Filters 8-11
Buffer Pointer 3)
CxBUFPNT4 (CANx Filters 12-15
Buffer Pointer 4)
CxCFG1 (CANx Baud Rate Configuration 1)
CxCFG2 (CANx Baud Rate Configuration 2)
CxCTRL1 (CANx Control 1)
CxCTRL2 (CANx Control 2)
CxEC (CANx Transmit/Receive Error Count)
CxFCTRL (CANx FIFO Control)
CxFEN1 (CANx Acceptance Filter Enable 1)
CxFIFO (CANx FIFO Status)
CxFMSKSEL1 (CANx Filters 7-0
Mask Selection 1) 310
CVEMSKSEL 2 (CANV Eiltors 15.8
Mask Selection 2)
CxINTE (CANx Interrupt Enable)
CxINTF (CANx Interrupt Flag)
CxRXFnEID (CANx Acceptance Filter n
Extended Identifier)
CxRXFnSID (CANx Acceptance Filter n
Standard Identifier) 309
CxRXFUL1 (CANx Receive Buffer Full 1)
CxRXFUL2 (CANx Receive Buffer Full 2)
CxRXFUL2 (CANx Receive Buffer Full 2)
CxRXMnEID (CANx Acceptance Filter Mask n
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)
CxRXMnEID (CANx Acceptance Filter Mask n Extended Identifier)

DEVREV (Device Revision)	415
DMALCA (DMA Last Channel Active Status)	140
DMAPPS (DMA Ping-Pong Status)	141
DMAPWC (DMA Peripheral Write	
Collision Status)	138
DMARQC (DMA Request Collision Status)	
DMAxCNT (DMA Channel x Transfer Count)	136
DMAxCON (DMA Channel x Control)	132
DMAxPAD (DMA Channel x	
Peripheral Address)	136
DMAxREQ (DMA Channel x IRQ Select)	133
DMAxSTAH (DMA Channel x	
Start Address A, High)	134
DMAxSTAL (DMA Channel x	
Start Address A, Low)	134
DMAxSTBH (DMA Channel x	
Start Address B, High)	135
DMAxSTBL (DMA Channel x	
Start Address B, Low)	135
DSADRH (DMA Most Recent RAM	
High Address)	137
DSADRL (DMA Most Recent RAM	
Low Address)	137
DTRx (PWMx Dead-Time)	
FCLCONx (PWMx Fault Current-Limit Control)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	287
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	
ICxCON2 (Input Capture x Control 2)	
INDXxCNTH (Index Counter x High Word)	
INDXxCNTL (Index Counter x High Word)	
INDXxHLD (Index Counter x Hold)	201
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTCON2 (Interrupt Control 2)	
INTCON4 (Interrupt Control 4)	
INTREG (Interrupt Control and Status)	
INTxHLDH (Interval Timerx Hold High Word) INTxHLDL (Interval Timerx Hold Low Word)	
. , , , , , , , , , , , , , , , , , , ,	
INTxTMRH (Interval Timerx High Word)	
INTxTMRL (Interval Timerx Low Word)	
IOCONx (PWMx I/O Control)	
LEBCONx (Leading-Edge Blanking Control x)	
	252
LEBDLYx (Leading-Edge Blanking Delay x)	252 253
MDC (PWMx Master Duty Cycle)	252 253 241
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address)	252 253 241
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory	252 253 241 107
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address)	252 253 241 107 107
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control)	252 253 241 107 107 105
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key)	252 253 241 107 107 105
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory	252 253 241 107 107 105 108
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address)	252 253 241 107 107 105 108
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory	252 253 241 107 107 105 108 108
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address)	252 253 241 107 107 105 108 108 109
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1)	252 253 241 107 105 108 108 108 109 224
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2)	252 253 241 107 105 108 108 108 109 224 226
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Control)	252 253 241 107 105 108 108 109 224 226 146
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning)	252 253 241 107 105 108 108 109 224 226 146 151
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning)	252 253 241 107 105 108 108 109 224 226 146 151 403
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 108 109 224 226 146 151 403 244
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 108 109 224 226 146 151 403 244 245
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 109 224 226 146 151 403 244 245 150
MDC (PWMx Master Duty Cycle) NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 109 224 226 146 151 403 244 245 150 400