

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm306-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **2:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

dsPIC33EPXXXGM3XX/6XX/7XX

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS70602), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Illegal Address Mode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
—	—	—	—	ILR3	ILR2	ILR1	ILR0				
bit 15							bit 8				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0				
bit 7							bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-12	Unimplemen	ted: Read as '	0'								
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits							
	1111 = CPU Interrupt Priority Level is 15										
	•										
	•										
		Interrupt Drierit	hulovolio 1								
	0001 = CPU	Interrupt Priori	ty Level is 0								
bit 7-0	VECNUM<7:	0>: Vector Nun	nber of Pendin	a Interrupt bits	3						
	111111111 =	255. Reserved	: do not use	.g							
	•	,	,								
	•										
	•										
	00001001 =	9, IC1 – Input (Capture 1								
	00001000 =	8, INTU – EXTE	rnal Interrupt (J							
	00000111 = 7, Reserved; do not use										
	00000110 =	5 DMA Contro	ller error trap								
	00000101 =	4 Math error tr	nei enoi ilap								
	0000011 =	3 Stack error t	ran								
	00000010 =	2. Generic har	d trap								
	00000001 =	1, Address erro	or trap								
	00000000 =	0, Oscillator fai	il trap								

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER	R 4
---	-----

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0		
	<u> </u>	U4MD		REFOMD	CTMUMD	<u> </u>	—		
bit 7							bit 0		
r									
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-6	Unimplemen	ted: Read as '0)'						
bit 5	U4MD: UART	4 Module Disal	ole bit						
	1 = UART4 m	odule is disable	ed						
	0 = UART4 m	odule is enable	d						
bit 4	Unimplemen	ted: Read as '0)'						
bit 3	REFOMD: Re	eference Clock	Module Disabl	e bit					
	1 = Reference	e clock module	is disabled						
	0 = Reference	e clock module	is enabled						
bit 2	CTMUMD: C	TMU Module Di	sable bit						
	1 = CTMU mo	odule is disable	d						
	0 = CTMU mo	odule is enabled	t						

bit 1-0 Unimplemented: Read as '0'

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	_	—	—	—	—	—	SPI3MD
bit 7			•				bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set	s set $(0)^2$ = Bit is cleared x = Bit is unknown			nown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	PWM6MD:PWM1MD: PWMx (x = 1-6) Module Disable bit
	1 = PWMx module is disabled
	0 = PWMx module is enabled
bit 7-1	Unimplemented: Read as '0'
bit 0	SPI3MD: SPI3 Module Disable bit
	1 = SPI3 module is disabled 0 = SPI3 module is enabled

© 2013-2014 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_				IC2R<6:0>								
bit 15							bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_				IC1R<6:0>								
bit 7							bit C					
Legend:												
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown					
bit 15	Unimpleme	ented: Read as '	0'									
bit 14-8	IC2R<6:0>: (see Table 2	IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)										
	1111100 =	Input tied to RPI	1124									
	•											
	•											
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1									
bit 7	Unimpleme	ented: Read as '	0'									
bit 6-0	IC1R<6:0>: (see Table ?	IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)										
	1111100 =	Input tied to RP	1124									
	•											
	•											
	0000001 =	Input tied to CM	P1									
	0000000 =	Input tied to Vss	3									

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				U3CTSR<6:0	>						
bit 15	-						bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				U3RXR<6:0>	>						
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 15	Unimpleme	ented: Read as '	0'								
bit 14-8	U3CTSR<6 (see Table 2	U3CTSR<6:0>: Assign UART3 Clear-to-Send (U3CTS) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)									
	1111111 =	Input tied to RP	124								
	•										
	•										
	0000001 =	0000001 = Input tied to CMP1									
	0000000 =	Input tied to Vss	5								
bit 7	Unimpleme	ented: Read as '	0'								
bit 6-0	U3RXR<6:0 (see Table 2	I>: Assign UART I1-2 for input pin	3 Receive (U selection nur	J3RX) to the Co mbers)	rresponding R	Pn/RPIn Pin bit	S				
	1111111 =	Input tied to RP	124								
	•										
	•										
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1								
		•									

REGISTER 11-21: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

FIGURE 17-1: QEIX BLOCK DIAGRAM

JSPIC33EPXXXGM3XX/6XX/7XX

REGISTER 17-6: POSxHLD: POSITION COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSHI	_D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn			nown				

bit 15-0 **POSHLD<15:0>:** Holding Register for Reading and Writing POSxCNT bits

REGISTER 17-7: VELxCNT: VELOCITY COUNTER x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur			x = Bit is unkr	nown			

bit 15-0 VELCNT<15:0>: Velocity Counter x bits

21.0 CONTROLLER AREA NETWORK (CAN) MODULE (dsPIC33EPXXXGM6XX/7XX DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Enhanced Controller Area Network (ECAN™)"** (DS70353), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Controller Area Network (CAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/ protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGM6XX/7XX devices contain two CAN modules.

The CAN module is a communication controller, implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The CAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and Extended Data Frames
- 0-8 Bytes of Data Length
- Programmable Bit Rate, up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to 8 Transmit Buffers with Application Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode supports Self-Test Operation
- Signaling via Interrupt Capabilities for all CAN Receiver and Transmitter Error States
- · Programmable Clock Source
- Programmable Link to Input Capture 2 (IC2) module for Timestamping and Network Synchronization
- · Low-Power Sleep and Idle modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0					
bit 15			•				bit 8					
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
	—	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0					
bit 7	·						bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown					
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13-8	FBP<5:0>: F	FBP<5:0>: FIFO Buffer Pointer bits										
	011111 = RE	011111 = RB31 buffer										
	011110 = RE	011110 = RB30 buffer										
	•											
	•											
	000001 = T F	000001 = TRB1 buffer										
	000000 = TRB0 buffer											
bit 7-6	Unimplemen	ted: Read as '	0'									
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poin	nter bits								
	011111 = RE	011111 = RB31 buffer										
	011110 = RE	011110 = RB30 buffer										
	•											
	•											
		2B1 buffer										
	000001 - TR	RB0 buffer										

REGISTER 21-5: CxFIFO: CANx FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN				
bit 15							bit 8				
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0				
	WAKIF	ERRIF	—	FIFOIF	RBOAL	RBIF					
DIL 7							DILC				
Legend:		C = Writable	bit, but only '0	' can be writte	n to clear the bi	t					
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13	TXBO: Trans	TXBO: Transmitter in Error State Bus Off bit									
	1 = Transmitte	er is in Bus Off	state								
hit 12	0 = Transmille	er is not in Bus	s Oli Siale Stato Rus Pas	sive hit							
	1 = Transmitte	IABE: ITANSMITTER IN ERFOR STATE BUS PASSIVE DIT									
	0 = Transmitte	0 = Transmitter is not in Bus Passive state									
bit 11	RXBP: Recei	ver in Error Sta	ate Bus Passiv	ve bit							
	1 = Receiver	is in Bus Pass	ive state								
	0 = Receiver	is not in Bus P	assive state								
bit 10	TXWAR: Trar	nsmitter in Erro	or State Warnin	ng bit							
	1 = Transmitter0 = Transmitter	er is in Error w er is not in Erro	arning state or Warning sta	ate							
bit 9	RXWAR: Rec	eiver in Error	State Warning	bit							
	1 = Receiver	is in Error War	ning state								
	0 = Receiver	is not in Error	Warning state								
bit 8	EWARN: Trai	nsmitter or Red	ceiver in Error	State Warning	bit						
	1 = Transmitte	er or receiver i er or receiver i	s in Error War	ning state							
bit 7	IVRIF: Invalid	l Message Inte	rrunt Flag bit	warning state							
	1 = Interrupt r	request has oc	curred								
	0 = Interrupt r	request has no	t occurred								
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit										
	1 = Interrupt r	request has oc	curred								
6# <i>5</i>		request has no	t occurred			t o>					
DIL S	1 = Interrupt r	Interrupt Flag	bit (multiple s	ources in Cxin	1F<13:8> regis	ter)					
	0 = Interrupt r	request has oc	t occurred								
bit 4	Unimplemen	ted: Read as '	0'								
bit 3	FIFOIF: FIFO	Almost Full In	terrupt Flag b	it							
	1 = Interrupt r	request has oc	curred								
	0 = Interrupt r	request has no	t occurred								
bit 2	RBOVIF: RX	Buffer Overflo	w Interrupt Fla	ag bit							
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	currea t occurred								

REGISTER 21-6: CXINTF: CANX INTERRUPT FLAG REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	
bit 15		-					bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read		d as '0'		
-n = Value at POR		'1' = Bit is set	1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	F7MSK<1:0>	: Mask Source	for Filter 7 bit	t				
	11 = Reserved							
	10 = Acceptance Mask 2 registers contain mask							
	01 = Acceptance Mask 1 registers contain mask							
h# 40 40	00 = Acceptance Mask U registers contain mask							
DIT 13-12	F6M5K<1:U>: Mask Source for Filter 6 bit (same values as bits 15-14)							
bit 11-10	F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bits 15-14)							
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bits 15-14)							
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bits 15-14)							
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bits 15-14)							

F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bits 15-14)

FOMSK<1:0>: Mask Source for Filter 0 bit (same values as bits 15-14)

REGISTER 21-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

bit 3-2

bit 1-0

REGISTER 21-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0		
bit 15							bit 8		
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0		
bit 7 bit 0									
Legend:	1.11								
R = Readable	bit	W = Writable	DIt	U = Unimpler	mented bit, read		as '0'		
-n = value at i	POR	"I" = Bit is set		"0" = Bit is cie	ared	x = Bit is unknown			
bit 15-8	See Definition	n for bits 7-0 co	ontrols Buffer	n					
bit 7	TXENm: TX/	RX Buffer Selec	ction bit						
	1 = Buffer, TF	RBn, is a transn	nit buffer						
	0 = Buffer, TF	RBn, is a receiv	e buffer						
bit 6	TXABTm: Me	essage Aborted	bit ⁽¹⁾						
	1 = Message	was aborted	ominaion aug	ooofully					
bit 5			rhitration hit(1)					
bit 5	1 = Message	lost arbitration	while being s	ent					
	0 = Message	did not lose art	pitration while	being sent					
bit 4	TXERRm: Error Detected During Transmission bit ⁽¹⁾								
1 = A bus error occurred while the message was being sent									
h # 0	0 = A bus error	or did not occui	while the me	ssage was bei	ing sent				
DIT 3	Dit 3 IXEUM: Message Send Request bit								
 requests that a message be sent; the bit automatically clears when the message is successfull Clearing the bit to '0' while set requests a message abort 							ccessiuily serit		
bit 2	bit 2 RTRENm: Auto-Remote Transmit Enable bit								
	1 = When a remote transmit is received, TXREQx will be set								
	0 = When a re	emote transmit	is received, T	XREQx will be	e unaffected				
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pr	iority bits					
	11 = Hignest message priority								
	01 = Low intermediate message priority								
	00 = Lowest I	message priorit	у						

Note 1: This bit is cleared when TXREQx is set.

Note: The buffers, SIDx, EIDx, DLCx, Data Field, and Receive Status registers, are located in DMA RAM.

33EPXXXGM3XX/6XX

0

4: When ADDMAEN (ADxCON4<8>) = 1, enabling DMA, only ADCxBUF0 is used.

ADCX MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANX PINS AND OP AMPS

CM4CON: OP AMP/COMPARATOR 4 CONTROL REGISTER (CONTINUED) REGISTER 26-3: EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽²⁾ bit 7-6 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output. 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output. If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output. 00 = Trigger/event/interrupt generation is disabled Unimplemented: Read as '0' bit 5 CREF: Comparator Reference Select bit (VIN+ input)⁽¹⁾ bit 4 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to C4IN1+ pin bit 3-2 Unimplemented: Read as '0' CCH<1:0>: Comparator Channel Select bits⁽¹⁾ bit 1-0 11 = VIN- input of comparator connects to OA3/AN6 10 = VIN- input of comparator connects to OA2/AN0 01 = VIN- input of comparator connects to OA1/AN3 00 = VIN- input of comparator connects to C4IN1-Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-5: **CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)**

- bit 3 ABEN: AND Gate B Input Enable bit
 - 1 = MBI is connected to the AND gate
 - 0 = MBI is not connected to the AND gate
- bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to the AND gate
- 0 = Inverted MBI is not connected to the AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to the AND gate 0 = MAI is not connected to the AND gate bit 0
 - AANEN: AND Gate A Input Inverted Enable bit
 - 1 = Inverted MAI is connected to the AND gate
 - 0 = Inverted MAI is not connected to the AND gate

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No. Symbol Characteristic			Min.	Тур.	Max.	Units	Conditions
	lı∟	Input Leakage Current ^(1,2)					
D150		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	VSS \leq VPIN \leq 5V, Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance, -40°C \leq TA \leq +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	_	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 33-5: POWER-ON RESET TIMING CHARACTERISTICS

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B