

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm306-h-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description			
	1	ST	Yes	Quadrature Encoder Index1 pulse input			
HOME1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Home1 pulse input			
QEA1 ⁽¹⁾	i	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer			
	-			external clock input in Timer mode.			
QEB1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer			
				external gate input in Timer mode.			
CNTCMP1 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 1.			
INDX2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Index2 Pulse input.			
HOME2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home2 Pulse input.			
QEA2 ⁽¹⁾	I.	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary timer			
				external clock input in Timer mode.			
QEB2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase B input in QEI2 mode. Auxiliary timer			
				external gate input in Timer mode.			
CNTCMP2 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 2.			
COFS	I/O	ST	Yes	Data Converter Interface frame synchronization pin.			
CSCK	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.			
CSDI	1	ST	Yes	Data Converter Interface serial data input pin.			
CSDO	0	—	Yes	Data Converter Interface serial data output pin.			
C1RX	I	ST	Yes	CAN1 bus receive pin.			
C1TX	0		Yes	CAN1 bus transmit pin			
C2RX	I	ST	Yes	CAN2 bus receive pin.			
C2TX	0	—	Yes	CAN2 bus transmit pin			
RTCC	0		No	Real-Time Clock and Calendar alarm output.			
CVREF	0	Analog	No	Comparator Voltage Reference output.			
C1IN1+, C1IN2-,	I	Analog	No	Comparator 1 inputs.			
C1IN1-, C1IN3-							
C10UT	0	—	Yes	Comparator 1 output.			
C2IN1+, C2IN2-,	Ι	Analog	No	Comparator 2 inputs.			
C2IN1-, C2IN3-	-		.,				
C2001	0		Yes	Comparator 2 output.			
C3IN1+, C3IN2-,	I	Analog	No	Comparator 3 inputs.			
C2IN1-, C3IN3-	~		Vaa	Compositor 2 output			
03001	0		res				
C4IN1+, C4IN2-,	I	Analog	No	Comparator 4 inputs.			
C4IN1-, C4IN3-	~						
64001	U		res				
C5IN1-, C5IN2-,		Analog	No	Comparator 5 inputs.			
C5IN3-, C5IN4-,							
C5IN1+			V				
C5001	0	—	Yes	Comparator 5 output.			
Legend: CMOS = CM	10Scc	mnatible	input a	or output Analog = Analog input P = Power			

TABLE 1-1:PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

I = Input

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0(²⁾ R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽¹) IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	OA: Accumu	lator A Overflow	v Status bit				
	1 = Accumul 0 = Accumul	ator A has over ator A has not c	flowed overflowed				
bit 14	OB: Accumu	lator B Overflov	v Status bit				
	1 = Accumul 0 = Accumul	ator B has over	flowed				
bit 13	SA: Accumu	lator A Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumul 0 = Accumul	ator A is satura ator A is not sat	ted or has bee	en saturated at	some time		
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾			
	1 = Accumul	ator B is satura	ted or has bee	en saturated at	some time		
	0 = Accumul	ator B is not sat	turated				
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit		
	1 = Accumul	ator A or B has	overflowed				
	0 = Neither A	Accumulator A c	or B has overfl	owed			
bit 10	SAB: SA S	B Combined A	ccumulator 'Si	icky Status bit	1		
	1 = Accumul 0 = Neither A	ator A or B is sa Accumulator A c	or B is saturated	s been saturate ed	ed at some time	•	
bit 9	DA: DO Loop	Active bit					
	1 = DO loop i	n progress					
	0 = DO loop i	not in progress					
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	1 = A carry - 0	out from the 4th	low-order bit (for byte-sized d	ata) or 8th low-	order bit (for wo	rd-sized data)
	0 = No carry data) of	-out from the 4 the result occur	th low-order b red	oit (for byte-size	ed data) or 8th	low-order bit (1	or word-sized
Note 1:	The IPL<2:0> bits Level. The value i IPL<3> = 1.	are concatena n parentheses i	ted with the IF ndicates the I	PL<3> bit (COR PL, if IPL<3> =	CON<3>) to fo 1. User interru	rm the CPU Inte pts are disable	errupt Priority d when

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	—	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4	_	-	_	_	_	_	_	_	_	_	DAE	DOOVR	_	—	_	_	0000
INTCON4	08C6		-	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	-	PMPIF ⁽¹⁾	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	FLT1IF	RTCCIF ⁽²⁾	—	DCIIF	DCIEIF	QEI1IF	PSEMIF	_	_	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	-	CTMUIF	FLT4IF	QEI2IF	FLT3IF	PSESMIF	_	_	_	_	_	CRCIF	U2EIF	U1EIF	FLT2IF	0000
IFS5	080A	PWM2IF	PWM1IF	—	_	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	_	_	_	U3TXIF	U3RXIF	U3EIF	_	0000
IFS6	080C	_	-	_	_	_	_	_	-	_	_	_	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
IFS9	0812	_	-	_	_	_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	_	PMPIE ⁽¹⁾	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	_	—	SPI2IE	SPI2EIE	0000
IEC3	0826	FLT1IE	RTCCIE ⁽²⁾	—	DCIIE	DCIEIE	QEI1IE	PSEMIE	-	—	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	_	_	CTMUIE	FLT4IE	QEI2IE	FLT3IE	PSESMIE	_	_	_	_	_	CRCIE	U2EIE	U1EIE	FLT2IE	0000
IEC5	082A	PWM2IE	PWM1IE	—	_	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	—	_	—	U3TXIE	U3RXIE	U3EIE		0000
IEC6	082C	_	_	_	_	_	_	_	_	_	_	_	_	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_		—	_	_	_	—	_	—	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	0842	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP2	4444
IPC2	0844	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	_	_	_	_	_	DMA1IP2	DMA1IP1	DMA1IP0	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4444
IPC4	0848	_	CNIP2	CNIP1	CNIP0	_	CMPIP2	CMPIP1	CMPIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	—	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	_	AD2IP2	AD2IP1	AD2IP0	_	INT1IP2	INT1IP1	INT1IP0	4444
IPC6	084C	_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	084E	_	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	—	—	—	_		_		—	SPI2IP2	SPI2IP1	SPI2IP0	_	SPI2EIP2	SPI2EIP1	SPI2EIP0	4444
IPC9	0852	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	DMA3IP2	DMA3IP1	DMA3IP0	4444
IPC10	0854		OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	_	IC6IP2	IC6IP1	IC6IP0	4444

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

Note 1: The PMPIF/PMPIE/PMPIPx flags are not available on 44-pin devices.

2: The RTCCIF/RTCCIE/RTCCIPx flags are not available on 44-pin devices.

4.3.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGM3XX/6XX/7XX architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EA). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an Extended Data Space (EDS) address, or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Figure 4-8. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> =1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS write address.

FIGURE 4-8: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

				-	-							
R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	R/W-0	R/W-0					
WR	WREN	WRERR	NVMSIDL ⁽²⁾	—	—	RPDF	URERR ⁽⁶⁾					
bit 15	·			•			bit 8					
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾					
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)					
bit 7							bit 0					
Legend:		SO = Settab	le Only bit									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'												
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ired	x = Bit is unkn	own					
bit 15	WR: NVM W	rite Control bit	(1)									
	1 = Initiates	a Flash mem	ory program o	r erase operati	on; the operation	on is self-timed	and the bit is					
		by hardware of	nce the operati	on is complete								
bit 11		Write Enchle	ation is comple									
DIL 14	WKEN: NVM Write Enable bit''											
	\perp = Lnables Flash program/erase operations 0 = Inhibits Flash program/erase operations											
bit 13	WRERR: NV	M Write Seque	ence Error Flag	g bit ⁽¹⁾								
	1 = An impro	per program o	r erase sequen	ce attempt, or te	ermination has o	ccurred (bit is se	et automatically					
	on any se	et attempt of th	e WR bit)									
	0 = The prog	gram or erase	operation com	pleted normally								
bit 12	NVMSIDL: N	VM Stop in Idl	e Control bit ⁽²⁾									
	1 = Flash vo 0 = Flash vo	Itage regulator	goes into Star	ndby mode durii Ia Idle mode	ng Idle mode							
bit 11-10	Unimplemen	ted: Read as	'0'									
hit 9	RPDF: Bus M	Astered Row	° Programming	Data Format Co	ontrol bit							
bit o	1 = Row data	a to be stored	in RAM in com	pressed format								
	0 = Row data	a to be stored	in RAM in unco	ompressed form	nat							
bit 8	URERR: Bus	Mastered Ro	w Programming	g Data Underru	n Error Flag bit ⁽	6)						
	1 = Indicates	s that a bus n	nastered row p	programming op	peration has be	en termination	due to a data					
	underrur	n error		1								
1.1.7.4		s no data unde	rrun error is de	etected								
dit 7-4	Unimplemen	ited: Read as	0									
Note 1:	These bits can c	only be reset o	n POR.									
2:	If this bit is set, t	here will be m	inimal power sa	avings (IIDLE), a	ind upon exiting	Idle mode, the	re is a delay					
•	(IVREG) before I	-lash memory	becomes oper	ational.								
3:	All other combin	ations of NVM	UP<3:0> are u	inimplemented.								
4:	Execution of the	PWRSAV Instru	lotion is ignore	a while any of t	ne ivvivi operat	ions are in prog	ress.					

- 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
- 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON	—	ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—		—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	Iown
bit 15	ROON: Refer	ence Oscillato	r Output Enab	ole bit	(2)		
	1 = Reference	e oscillator out	out is enabled	on the REFCL	.K pin ⁽²⁾		
L:4 4	0 = Reference	e oscillator outp	out is disabled	1			
DIL 14		ference Opeille	U Har Dun in Sk	aan hit			
DIL 13	1 - Poforonov	erence Oscilla	nor Run in Sie	to run in Sloon			
	0 = Reference	e oscillator out	out is disabled	d in Sleep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit			
	1 = Oscillator	crystal is used	as the refere	nce clock			
	0 = System cl	lock is used as	the reference	eclock			
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾			
	1111 = Refer	ence clock divi	ded by 32,76	8			
	1110 = Refer	ence clock divi ence clock divi	ded by 16,384 ded by 8 192	4			
	1100 = Refer	ence clock divi	ded by 4,096				
	1011 = Refer	ence clock divi	ded by 2,048				
	1010 = Refer	ence clock divi	ded by 1,024				
	1001 = Refer	ence clock divi ence clock divi	ded by 512 ded by 256				
	0111 = Refer	ence clock divi	ded by 128				
	0110 = Refer	ence clock divi	ded by 64				
	0101 = Refer	ence clock divi	ded by 32				
	0100 = Refer	ence clock divi	ded by 16				
	0010 = Refer	ence clock divi	ded by 4				
	0001 = Refer	ence clock divi	ded by 2				
	0000 = Refer	ence clock					
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 4	SPI2MD: SPI2 Module Disable bit
	1 = SPI2 module is disabled
	0 = SPI2 module is enabled
bit 3	SPI1MD: SPI1 Module Disable bit
	1 = SPI1 module is disabled
	0 = SPI1 module is enabled
bit 2	C2MD: CAN2 Module Disable bit ⁽¹⁾
	1 = CAN2 module is disabled
	0 = CAN2 module is enabled
bit 1	C1MD: CAN1 Module Disable bit ⁽¹⁾
	1 = CAN1 module is disabled
	0 = CAN1 module is enabled
bit 0	AD1MD: ADC1 Module Disable bit
	1 = ADC1 module is disabled
	0 = ADC1 module is enabled

Note 1: These bits are available on dsPIC33EPXXXGM6XX/7XX devices only.

REGISTER 11-26: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP1R<6:0	0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—			—	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	DTCMP1R<6 (see Table 11-	: 0>: Assign PV -2 for input pin	VM Dead-Tim selection nur	e Compensation nbers)	on Input 1 to the	e Corresponding	RPn Pin bits
	1111100 = In	put tied to RPI	124				
	•						
	•						
	• 0000001 – In	oput tied to CM	D1				
	$0000000 = \ln 000000 = \ln 0000000 = 100000000 = 10000000000$	put tied to Vss					
bit 7-0	Unimplemen	ted: Read as '	0'				

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2, 4, 6 AND 8)

FIGURE 17-1: QEIX BLOCK DIAGRAM

JSPIC33EPXXXGM3XX/6XX/7XX

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3MSK1	F3MSK0 F2MSK1 F2MS		F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	F7MSK<1:0>	: Mask Source	for Filter 7 bit	t					
	11 = Reserve	ed							
	10 = Accepta	nce Mask 2 reg	gisters contair	n mask					
	01 = Accepta	nce Mask 1 reg	gisters contair	n mask					
		nce wask o reg		i mask					
DIT 13-12	bit 13-12 F6MSK<1:0>: Mask Source for Filter 6 bit			(same values	as bits 15-14)				
bit 11-10	10 F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bits 15-14)								
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bits 15-14)								
bit 7-6	F3MSK<1:0>	: Mask Source	for Filter 3 bit	t (same values	as bits 15-14)				
bit 5-4	F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bits 15-14)								

F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bits 15-14)

FOMSK<1:0>: Mask Source for Filter 0 bit (same values as bits 15-14)

REGISTER 21-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

bit 3-2

bit 1-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—	—	_	_	—
bit 7							bit 0
Logondi							
R = Reada	uhle hit	W = Writable	hit	II = I Inimplen	nented hit read	l as 'N'	
-n = Value	at POR	'1' = Rit is set	bit	$0^{\circ} = \text{Bit is clear}$	ared	x = Ritis unkr	nown
					area		lowin
bit 15-10	ITRIM<5:0>:	Current Source	e Trim bits				
	011111 = Ma	iximum positive	e change from	nominal curren	t + 62%		
	011110 = Ma	iximum positive	e change from	nominal curren	t + 60%		
	•						
	•						
	000010 = M ir	nimum positive	change from r	nominal current	+ 4%		
	000001 = Mir	nimum positive	change from r	nominal current	+ 2%		
	1111111 = Mir	minal current o	e change from	nominal curren	t – 2%		
	111110 = Mi r	nimum negative	e change from	nominal curren	t – 4%		
	•						
	•						
	100010 = Ma	ximum negativ	e change from	nominal currer	nt – 60%		
	100001 = Ma	iximum negativ	e change from	nominal currer	nt – 62%		
bit 9-8	IRNG<1:0>: (Current Source	Range Select	bits			
	11 = 100 × Ba	ase Current ⁽²⁾					
	$10 = 10 \times Bas$	se Current ⁽²⁾					
	$01 = Base Cu00 = 1000 \times E$	Base Current ^{(1,}	2)				
bit 7-0	Unimplemen	ted: Read as '	0'				
Note 1:	This current range	e is not availab	le for use with	the internal ten	nperature meas	surement diode	2
2:	Refer to the CTM	U Current Sou	rce Specificatio	ons (Table 33-5	5) in Section 3	3.0 "Electrica	1
	Characteristics"	for the current	range selectio	n values.	, -		

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	_	_	_	CEVT ⁽²⁾	COUT
bit 15							bit
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1 ⁽²⁾	EVPOL0 ⁽²⁾	_	CREF ⁽¹⁾	—	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
		10	-				
DIT 15	CON: Op Am	p/Comparator	Enable bit				
	1 = Compara 0 = Compara	tor is enabled					
hit 14	COE: Compare	rator Output F	nahle hit				
bit 14	1 = Compara	tor output is pr	esent on the (
	0 = Compara	tor output is int	ernal only				
bit 13	CPOL: Comp	parator Output	Polarity Select	t bit			
	1 = Compara	tor output is inv	verted				
	0 = Compara	tor output is no	t inverted				
bit 12-10	Unimplemen	ted: Read as '	0'				
bit 9	CEVT: Compa	arator Event bi	t(2)				
	1 = Compara	ator event, acco	ording to the E	VPOL<1:0> se	ttings, occurre	d; disables futur	e triggers and
		s until the bit is	cleared				
hit Q		ator event did i	not occur				
DILO	When CPOI		od polarity):				
	1 = VIN + > VII	<u>– 0 (1011-1110e11</u> N-	eu polanty).				
	0 = VIN + < VII	N-					
	When CPOL	= 1 (inverted p	olarity):				
	1 = VIN+ < VII	N-					
	0 = VIN + > VII	N-					
Note 1: Inp	uts that are sele	ected and not a	vailable will be	e tied to Vss. S	ee the "Pin Di	agrams" sectior	n for available
inp	uts for each pao	ckage.					

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

bit 3-0 SELSRCA<3:0>: Mask A Input Select bits 1111 = FLT4

1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = PWM6H 1010 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4H 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L

- 0001 = PWM1H
- 0000 = PWM1L

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER⁽³⁾ (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽¹⁾ 1 = Active-high (PMCS1/PMCS)⁽²⁾ 0 = Active-low (PMCS1/PMCS)
- bit 2 **BEP:** Byte Enable Polarity bit
 - 1 = Byte enable is active-high (PMBE)
 - 0 = Byte enable is active-low (PMBE)
- bit 1
 WRSP: Write Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Write strobe is active-high (PMWR)

 0 = Write strobe is active-low (PMWR)

 For Master Mode 1 (PMMODE<9:8> = 11):

 1 = Enables strobe active-high (PMENB)

 0 = Enables strobe active-low (PMENB)

 0 = Enables strobe active-low (PMENB)

 bit 0
 RDSP: Read Strobe Polarity bit

 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

 1 = Read strobe is active-high (PMRD)
 - 0 = Read strobe is active-ligh (PMRD)
 - 0 Read Strobe is active-low (FIVIRD)
 - For Master Mode 1 (PMMODE<9:8> = 11):
 - 1 = Enables strobe active-high (PMRD/PMWR)
 - 0 = Enables strobe active-low (PMRD/PMWR)
- **Note 1:** These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.
 - 3: This register is not available on 44-pin devices.

FIGURE 33-18: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-35:SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SP10	FscP	Maximum SCKx Frequency		—	9	MHz	-40°C to +125°C (Note 3)			
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)			
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)			
SP30	TdoF	SDOx Data Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)			
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 (Note 4)			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns				
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns				

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

35.1 Package Marking Information (Continued)

64-Lead TQFP (10x10x1 mm)

Example

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

121-Lead TFBGA (10x10x1.1 mm)

Example

Example

121-Ball Plastic Thin Profile Fine Pitch Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148 Rev F Sheet 1 of 2