

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm306-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE 4-1:	CPU CORE REGISTER MAP	(CONTINUED)
------------	-----------------------	-------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	—	US1	US0	EDT	DL1	DL2	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048							XMC	DSRT<15:0	>							_	0000
XMODEND	004A	XMODEND<15:0>									_	0001						
YMODSRT	004C							YMC	DSRT<15:0	>							_	0000
YMODEND	004E							YMC	DEND<15:0)>							_	0001
XBREV	0050	BREN							XBF	REV<14:0>								0000
DISICNT	0052	— — DISICNT<13:0>										0000						
TBLPAG	0054	_	_	_	_	_	_	_	_				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	:15:0>								0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	0								011 051									
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	—	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4	_	-	_	_	_	_	_	_	_	_	DAE	DOOVR	_	—	_	_	0000
INTCON4	08C6		-	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	-	PMPIF ⁽¹⁾	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	FLT1IF	RTCCIF ⁽²⁾	—	DCIIF	DCIEIF	QEI1IF	PSEMIF	_	_	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	-	CTMUIF	FLT4IF	QEI2IF	FLT3IF	PSESMIF	_	_	_	_	_	CRCIF	U2EIF	U1EIF	FLT2IF	0000
IFS5	080A	PWM2IF	PWM1IF	—	_	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	_	_	_	U3TXIF	U3RXIF	U3EIF	_	0000
IFS6	080C	_	-	_	_	_	_	_	-	_	_	_	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
IFS9	0812	_	-	_	_	_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	_	PMPIE ⁽¹⁾	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	_	—	SPI2IE	SPI2EIE	0000
IEC3	0826	FLT1IE	RTCCIE ⁽²⁾	—	DCIIE	DCIEIE	QEI1IE	PSEMIE	-	—	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	_	_	CTMUIE	FLT4IE	QEI2IE	FLT3IE	PSESMIE	_	_	_	_	_	CRCIE	U2EIE	U1EIE	FLT2IE	0000
IEC5	082A	PWM2IE	PWM1IE	—	_	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	—	_	—	U3TXIE	U3RXIE	U3EIE		0000
IEC6	082C	_	_	_	_	_	_	_	_	_	_	_	_	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_		—	_	_	_	—	_	—	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	0842	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	DMA0IP2	DMA0IP1	DMA0IP2	4444
IPC2	0844	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	_	_	_	_	_	DMA1IP2	DMA1IP1	DMA1IP0	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4444
IPC4	0848	_	CNIP2	CNIP1	CNIP0	_	CMPIP2	CMPIP1	CMPIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	—	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	_	AD2IP2	AD2IP1	AD2IP0	_	INT1IP2	INT1IP1	INT1IP0	4444
IPC6	084C	_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	DMA2IP2	DMA2IP1	DMA2IP0	4444
IPC7	084E	_	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	—	—	—	_		_		—	SPI2IP2	SPI2IP1	SPI2IP0	_	SPI2EIP2	SPI2EIP1	SPI2EIP0	4444
IPC9	0852	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	DMA3IP2	DMA3IP1	DMA3IP0	4444
IPC10	0854		OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	_	IC6IP2	IC6IP1	IC6IP0	4444

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

Note 1: The PMPIF/PMPIE/PMPIPx flags are not available on 44-pin devices.

2: The RTCCIF/RTCCIE/RTCCIPx flags are not available on 44-pin devices.

TABLE 4-17:	I2C1 AND I2C2 REGISTER MAP
-------------	----------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—		—	—		—	—				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	_	_	_	_	_	_				I2C1 Transr	nit Register				OOFF
I2C1BRG	0204							E	Baud Rate (Generator R	egister							0000
I2C1CON	0206	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT		_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	—		_	—			I2C1 Address Register							0000		
I2C1MSK	020C	_	—		_	—					Ľ	2C1 Address	Mask Regis	ster				0000
I2C2RCV	0210	_	—		_	—		_	—				I2C2 Recei	ve Register				0000
I2C2TRN	0212	_	—		_	—		_	—				I2C2 Transr	nit Register				00FF
I2C2BRG	0214							E	Baud Rate C	Generator R	legister							0000
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT		_	—	BCL	GCSTAT	ADD10	D10 IWCOL I2COV D_A P S R_W RBF TBF C							0000	
I2C2ADD	021A	_	—		_	—						I2C2 Addr	ess Register					0000
I2C2MSK	021C		_	_	_	_	_			I2C2 Address Mask Register 00								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART1	Transmit Re	egister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_	- UART1 Receive Register 00								0000	
U1BRG	0228							Ba	ud Rate 0	Generator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_	UART2 Transmit Register xx								xxxx	
U2RXREG	0236	_	—	-	—	_	_	_				UART2	Receive Re	gister				0000
U2BRG	0238							Ba	Baud Rate Generator Prescaler 000									0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DCICON1	0280	DCIEN	r	DCISIDL	r	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	r	r	r	COFSM1	COFSM0	0000
DCICON2	0282	r	r	r	r	BLEN1	BLEN0	r	COFSG3	COFSG2	COFSG1	COFSG0	r	WS3	WS2	WS1	WS0	0000
DCICON3	0284	r	r	r	r						BCG<	:11:0>						0000
DCISTAT	0286	r	r	r	r	SLOT3	SLOT2	SLOT1	SLOT0	r	r	r	r	ROV	RFUL	TUNF	TMPTY	0000
TSCON	0288		TSE<15:0> 0000											0000				
RSCON	028C		RSE<15:0> 0000											0000				
RXBUF0	0290							I	Receive 0 D	ata Registe	r							uuuu
RXBUF1	0292							I	Receive 1 D	ata Registe	r							uuuu
RXBUF2	0294							I	Receive 2 D	ata Registe	r							uuuu
RXBUF3	0296							I	Receive 3 D	ata Registe	r							uuuu
TXBUF0	0298							٦	Fransmit 0 D	ata Registe	r							0000
TXBUF1	029A	Transmit 1 Data Register 0000										0000						
TXBUF2	029C							1	Fransmit 2 D	ata Registe	r							0000
TXBUF3	029E	Transmit 3 Data Register 0000																

Legend: u = unchanged; r = reserved; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

INDEE	- 02.																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—			RP35	R<5:0>			—	—			RP20	R<5:0>			0000
RPOR1	0682	_	_			RP37	R<5:0>			_	_	— RP36R<5:0>						0000
RPOR2	0684	_	_			RP39	R<5:0>		— — RP38R<5:0>							0000		
RPOR3	0686	_	_	RP41R<5:0> — — RP40R<5:0>									0000					
RPOR4	0688	_	-			RP43	RP43R<5:0> — — RP42R<5:0>							0000				
RPOR5	068A	_	_			RP49	R<5:0>			_	—			RP48	R<5:0>			0000
RPOR6	068C	_	_			RP55	R<5:0>			_	—			RP54	R<5:0>			0000
RPOR7	068E	_	_			RP57	R<5:0>			_	—			RP56	R<5:0>			0000
RPOR8	0690	_	_			RP70	R<5:0>			_	—			RP69	R<5:0>			0000
RPOR9	0692	_	_	RP97R<5:0> — — RP81R<5:0>								0000						
RPOR10	0694	_	_			RP118	R<5:0>	— — RP113R<5:0>							0000			
RPOR11	0696	_	-			RPR12	5R<5:0>			_	—	- RPR120R<5:0>					0000	
RPOR12	0698	—	_			RPR12	7R<5:0>				_	- RPR126R<5:0>						0000

TABLE 4-32: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms; it is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XB value is scaled accordingly to
	generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo	Addressing	and	Bit-Rev	ersed
	Addressi	ing can be er	abled s	simultane	ously
	using the	e same W regi	ster, bu	it Bit-Rev	ersed
	Addressi	ing operatio	n will	always	take
	preceder	nce for data w	rites w	hen enab	led.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				U3CTSR<6:0	>		
bit 15	-						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U3RXR<6:0>	>		
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	U3CTSR<6 (see Table 2	:0>: Assign UAR 11-2 for input pin	T3 Clear-to-S selection nur	Send (U3CTS) t mbers)	to the Corresp	onding RPn/RP	In Pin bits
	1111111 =	Input tied to RP	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	U3RXR<6:0 (see Table 2	I>: Assign UART I1-2 for input pin	3 Receive (U selection nur	J3RX) to the Co mbers)	rresponding R	Pn/RPIn Pin bit	S
	1111111 =	Input tied to RP	124				
	•						
	•						
	0000001 = 0000000 =	Input tied to CM Input tied to Vss	P1				
		•					

REGISTER 11-21: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = OCxRS compare event is used for synchronization 11110 = INT2 is the source for compare timer synchronization 11101 = INT1 is the source for compare timer synchronization 11100 = CTMU trigger is the source for compare timer synchronization 11011 = ADC1 interrupt is the source for compare timer synchronization 11010 = Analog Comparator 3 is the source for compare timer synchronization 11001 = Analog Comparator 2 is the source for compare timer synchronization 11000 = Analog Comparator 1 is the source for compare timer synchronization 10111 = Input Capture 8 interrupt is the source for compare timer synchronization 10110 = Input Capture 7 interrupt is the source for compare timer synchronization 10101 = Input Capture 6 interrupt is the source for compare timer synchronization 10100 = Input Capture 5 interrupt is the source for compare timer synchronization 10011 = Input Capture 4 interrupt is the source for compare timer synchronization 10010 = Input Capture 3 interrupt is the source for compare timer synchronization 10001 = Input Capture 2 interrupt is the source for compare timer synchronization 10000 = Input Capture 1 interrupt is the source for compare timer synchronization 01111 = GP Timer5 is the source for compare timer synchronization 01110 = GP Timer4 is the source for compare timer synchronization 01101 = GP Timer3 is the source for compare timer synchronization 01100 = GP Timer2 is the source for compare timer synchronization 01011 = GP Timer1 is the source for compare timer synchronization 01010 = PTGx trigger is the source for compare timer synchronization⁽³⁾ 01001 = Compare timer is unsynchronized 01000 = Output Compare 8 is the source for compare timer synchronization^(1,2) 00111 = Output Compare 7 is the source for compare timer synchronization^(1,2) 00110 = Output Compare 6 is the source for compare timer synchronization^(1,2) 00101 = Output Compare 5 is the source for compare timer synchronization^(1,2) 00100 = Output Compare 4 is the source for compare timer synchronization^(1,2) 00011 = Output Compare 3 is the source for compare timer synchronization^(1,2) 00010 = Output Compare 2 is the source for compare timer synchronization^(1,2) 00001 = Output Compare 1 is the source for compare timer synchronization^(1,2) 00000 = Compare timer is unsynchronized
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
 - 3: Each Output Compare x module (OCx) has one PTG Trigger/Sync source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO4 = OC1, OC5 PTGO5 = OC2, OC6 PTGO6 = OC3, OC7 PTGO7 = OC4, OC8

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER

U-0	U-0	U-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	SESTAT: Special Event Interrupt Status bit
	 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWM cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI2/SYNCO2 polarity is inverted (active-low)0 = SYNCI2/SYNCO2 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO2 output is enabled0 = SYNCO2 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾
	111 = Reserved
	•
	•
	100 = Reserved
	$011 = PTGO17^{(2)}$
	$010 = PTGO16^{(2)}$
	000 = SYNCI1
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of

- application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 21-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| F15MSK1 | F15MSK0 | F14MSK1 | F14MSK0 | F13MSK1 | F13MSK0 | F12MSK1 | F12MSK0 |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	F15MSK<1:0>: Mask Source for Filter 15 bit 11 = Reserved 10 = Acceptance Mask 2 registers contain mask 01 = Acceptance Mask 1 registers contain mask 00 = Acceptance Mask 0 registers contain mask
bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bits 15-14)
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bits 15-14)
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bits 15-14)
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bits 15-14)
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bits 15-14)
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bits 15-14)
bit 1-0	F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bits 15-14)

REGISTER 21-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0			
bit 15							bit 8			
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENm	TXENm TXABTm ⁽¹⁾ TXLARBm ⁽¹⁾ TXERRm ⁽¹⁾ TXREQm RTRENm TXmPRI1 T									
bit 7 bit 0										
Legend:	1.11									
R = Readable	bit	W = Writable	DIt	U = Unimpler	mented bit, read					
-n = value at i	POR	"I" = Bit is set		"0" = Bit is cie	ared	x = Bit is unkr	iown			
bit 15-8	See Definition	n for bits 7-0 co	ontrols Buffer	n						
bit 7	TXENm: TX/	RX Buffer Selec	ction bit							
	1 = Buffer, TF	RBn, is a transn	nit buffer							
	0 = Buffer, TF	RBn, is a receiv	e buffer							
bit 6	TXABTm: Me	essage Aborted	bit ⁽¹⁾							
	1 = Message	was aborted	ominaion aug	ooofully						
bit 5			rhitration hit(1)						
bit 5	1 = Message	lost arbitration	while being s	ent						
	0 = Message	did not lose art	pitration while	being sent						
bit 4	TXERRm: Er	ror Detected D	uring Transmi	ssion bit ⁽¹⁾						
	1 = A bus erro	or occurred whi	le the messag	ge was being s	ent					
h # 0	0 = A bus erro	or did not occui	while the me	ssage was bei	ing sent					
DIT 3		essage Send R	equest bit	vit automatically	, cloars when th		coosefully cont			
	0 = Clearing	the bit to '0' wh	ile set reques	its a message	abort	e message is su	ccessiuity sent			
bit 2	RTRENm: Au	uto-Remote Tra	nsmit Enable	bit						
	1 = When a re	emote transmit	is received, T	XREQx will be	e set					
	0 = When a re	emote transmit	is received, T	XREQx will be	e unaffected					
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pr	iority bits						
	11 = Highest 10 = High interview	message priori	ty sade priority							
	01 = Low inte	ermediate mess	age priority							
	00 = Lowest I	message priorit	у							

Note 1: This bit is cleared when TXREQx is set.

Note: The buffers, SIDx, EIDx, DLCx, Data Field, and Receive Status registers, are located in DMA RAM.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

REGISTER 23-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where 'x' = 0-15.

	REGIS	STER				(OL	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	HLMS: High 1 = The mask 0 = The mask	or Low-Level M king (blanking) king (blanking)	Masking Select function will pre function will pre	bit event any asse event any asse	erted ('0') compa erted ('1') compa	arator signal fro arator signal fro	m propagating m propagating
bit 14	Unimplemen	ted: Read as	'0'				
bit 13	OCEN: OR G	Sate C Input E	nable bit				
	1 = MCI is co 0 = MCI is no	onnected to the ot connected to	OR gate the OR gate				
bit 12	OCNEN: OR	Gate C Input	Inverted Enable	e bit			
	1 = Inverted 0 = Inverted	MCI is connec MCI is not con	ted to the OR g nected to the C	gate DR gate			
bit 11	OBEN: OR G	Gate B Input Er	nable bit				
	1 = MBI is co 0 = MBI is no	nnected to the t connected to	OR gate the OR gate				
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit			
	1 = Inverted 0 = Inverted	MBI is connect MBI is not con	ed to the OR g nected to the C	jate)R gate			
bit 9	OAEN: OR G	Sate A Input Er	nable bit				
	1 = MAI is co 0 = MAI is no	nnected to the ot connected to	OR gate the OR gate				
bit 8	OANEN: OR	Gate A Input I	nverted Enable	e bit			
	1 = Inverted 0 = Inverted	MAI is connect MAI is not con	ed to the OR g nected to the C	jate)R gate			
bit 7	NAGS: AND 1 = Inverted <i>A</i> 0 = Inverted <i>A</i>	Gate Output li ANDI is conne ANDI is not co	nverted Enable cted to the OR nnected to the	e bit gate OR gate			
bit 6	PAGS: AND 1 = ANDI is c 0 = ANDI is r	Gate Output E connected to the not connected	nable bit le OR gate to the OR gate				
bit 5	ACEN: AND	Gate C Input E	Enable bit				
	1 = MCI is co 0 = MCI is no	onnected to the ot connected to	AND gate the AND gate				
bit 4	ACNEN: ANI	D Gate C Input MCI is connect	t Inverted Enab ted to the AND	ole bit gate			

REGISTER 26-5 CMXMSKCON: COMPARATOR X MASK GATING CONTROL

© 2013-2014 Microchip Technology Inc.

0 = Inverted MCI is not connected to the AND gate

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0				
—	—	—	-	CVRR1	VREFSEL	—	—				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-12	Unimplemen	ted: Read as ')'								
bit 11	CVRR1: Com	parator Voltage	e Reference F	Range Selectio	n bit						
	See bit 5.										
bit 10	VREFSEL: Vo	oltage Referend	ce Select bit								
	1 = CVREFIN = 0 = CVREFIN i	= VREF+ s generated by	the resistor r	etwork							
hit 9-8		ted: Read as '	יי ז'	ICTWOIN							
bit 7	CVREN: Com	narator Voltag	- Reference F	nable bit							
bit /	1 = Comparat	for voltage refe	rence circuit is	s powered on							
	0 = Comparat	tor voltage refe	rence circuit is	s powered dov	vn						
bit 6	CVROE: Corr	parator Voltag	e Reference (Dutput Enable	on CVREF10 Pir	n bit					
	1 = Voltage le	vel is output or	the CVREF1	o pin							
	0 = Voltage le	vel is disconne	cted from the	CVREF10 pin							
bit 11, 5	CVRR<1:0>:	Comparator Vo	ltage Referer	nce Range Sel	ection bits						
	11 = 0.00 CV	RSRC to 0.94, w	/ith CVRSRC/1	6 step-size							
	10 = 0.00 CVRSRC to 0.67, with CVRSRC/24 step-size										
	00 = 0.25 CV	RSRC to 0.75, w	ith CVRSRC/3	2 step-size							
bit 4	CVRSS: Com	parator Voltage	e Reference S	Source Selection	on bit						
	1 = Comparat	tor voltage refe	rence source,	CVRSRC = CV	REF+ – AVSS						
	0 = Comparat	tor voltage refe	rence source,	CVRSRC = AV	DD – AVSS						
bit 3-0	CVR<3:0> Co	omparator Volta	ige Reference	e Value Selecti	on $0 \leq CVR < 3:C$)> ≤ 15 bits					
	CVREE = (CVR	< <u>1:0> = 11:</u> R<3:0>/16) ● ((VRSRC)								
	When CVRR	<1:0> = 10:									
	$\overline{\text{CVREF}} = (1/3)$	• (CVRSRC) +	(CVR<3:0>/24	4) • (CVRSRC)							
	When CVRR-	<1:0> = 01:		,							
	CVREF = (CVI	R<3:0>/24) • (0	CVRSRC)								
	When CVRR	<1:0> = 00:		$(\mathbf{O}) = (\mathbf{O})$							
	CVREF = (1/4)	$\bullet (UVRSRC) +$	(UVR<3:0>/3)	∠) ● (UVRSRC)							

REGISTER 26-7: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

REGISTER 28-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER (MASTER MODES ONLY)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8		
bit 15		•		·		•	bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0		
bit 7		•		·		•	bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at	Reset	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15 bit 14	CS2: Chip Set If PMCON<7: 1 = Chip Sete 0 = Chip Sete If PMCON<7: Bit functions a CS1: Chip Sete If PMCON<7: 1 = Chip Sete 0 = Chip Sete If PMCON<7: Bit functions a	elect 2 bit $6 \ge 10 \text{ or } 01$: $2 \ge 10 \text{ or } 01$: $2 \ge 11 \text{ or } 00$: $3 \ge ADDR15$. elect 1 bit $6 \ge 10$: $2 \ge 11 \text{ or } 0x$: $2 \ge 11 \text{ or } 0x$: $3 \ge ADDR14$.							
bit 13-0	ADDR<13:0>	: Destination A	ddress bits						

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two Data Buffer registers.

2: This register is not available on 44-pin devices.

REGISTER 30-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R
			DEVID<	23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID<	:15:8> (1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID	<7:0> ⁽¹⁾			
bit 7							bit 0
Legend:	R = Read-Only bit	U = Unimplemented bit					

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 30-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R		
DEVREV<23:16> ⁽¹⁾									
bit 23 bi									
R	R	R	R	R	R	R	R		
DEVREV<15:8> ⁽¹⁾									
bit 15	bit 15 bit								
R	R	R	R	R	R	R	R		
DEVREV<7:0> ⁽¹⁾									
bit 7							bit 0		
Legend:	R = Read-only bit	U = Unimplemented bit							

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
53	NEG	NEG Acc		Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	f = f + 1	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	VVd = Rotate Left (No Carry) VVs	1	1	N,Z
60	RRC	RRC	I CARDO	T = Rotate Right through Carry f	1	1	C,N,Z
		RRC	L, WREG	WREG - Rotate Right through Carry Wa	1	1	C,N,Z
67	DDNC	RRC	ws,wa	f = Rotate Right (No Carry) f	1	1	0,N,Z
07	KKINC	PRNC	L f WDTC	W/REG = Potate Pight (No Carry) f	1	1	N Z
		PRNC	Ne Wd	Wd = Rotate Right (No Carry) Ws	1	1	N Z
68	SAC	SAC	Acc #Slit4 Wdo	Store Accumulator	1	1	None
00	brie	SAC R	Acc. #Slit4.Wdo	Store Rounded Accumulator	1	1	None
69	SE	SE	Ws.Wnd	Wnd = sign-extended Ws	1	1	C.N.Z
70	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
71	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB.SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

FIGURE 33-19: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS