

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm306-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 5 MHz < FIN < 13.6 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers
- Dual motor control

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- **Note 1:** The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **2:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC11	0856	_	T6IP2	T6IP1	T6IP0	-	_	_	—	_	PMPIP2 ⁽¹⁾	PMPIP1 ⁽¹⁾	PMPIP0 ⁽¹⁾		OC8IP2	OC8IP1	OC8IP0	4444
IPC12	0858	_	T8IP2	T8IP1	T8IP0	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	T7IP2	T7IP1	T7IP0	4444
IPC13	085A	_	_	_	_	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	T9IP2	T9IP1	T9IP0	4444
IPC14	085C	_	DCIEIP2	DCIEIP1	DCIEIP0	_	QEI1IP2	QEI1IP2	QEI1IP0	_	PCEPIP2	PCEPIP1	PCEPIP0	_	_	-	_	4444
IPC15	085E	_	FLT1IP2	FLT1IP1	FLT1IP0	_	RTCCIP2(2)	RTCCIP1(2)	RTCCIP0(2)	_	—	_	_	_	DCIIP2	DCIIP1	DCIIP0	0404
IPC16	0860	_	CRCIP2	CRCIP1	CRCIP0	_	U2EIP2	U2EIP1	U2EIP0	_	U1EIP2	U1EIP1	U1EIP0	_	FLT2IP2	FLT2IP1	FLT2IP0	4440
IPC18	0864	_	C2TXIP2	C2TXIP1	C2TXIP0	_	FLT3IP2	FLT3IP1	FLT3IP0	_	PCESIP2	PCESIP1	PCESIP0	_	_	_	_	4040
IPC19	0866	_	_	_	_	_	_	_	_	_	CTMUIP2	CTMUIP1	CTMUIP0	_	FLT4IP2	FLT4IP1	FLT4IP0	0004
IPC20	0868	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3EIP2	U3EIP1	U3EIP0	_	_	_	_	0000
IPC21	086A	_	U4EIP2	U4EIP1	U4EIP0	_	_	_	_	_	_	_	_	_	_	_	_	0000
IPC22	086C	_	SPI3IP2	SPI3IP1	SPI3IP0	_	SPI3EIP2	SPI3EIP1	SPI3EIP0	_	U4TXIP2	U4TXIP1	U4TXIP0	_	U4RXIP2	U4RXIP1	U4RXIP0	0000
IPC23	086E	_	PGC2IP2	PGC2IP1	PGC2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0	_	_	_	_	_	_	_	_	4400
IPC24	0870	_	PWM6IP2	PWM6IP1	PWM6IP0	_	PWM5IP2	PWM5IP1	PWM5IP0	_	PWM4IP2	PWM4IP1	PWM4IP0	_	PWM3IP2	PWM3IP1	PWM3IP0	4444
IPC35	0886	_	JTAGIP2	JTAGIP1	JTAGIP0	_	ICDIP2	ICDIP1	ICDIP0	_	_	_	_	_	_	_	_	4400
IPC36	0888	_	PTG0IP2	PTG0IP1	PTG0IP0	_	PTGWDTIP2	PTGWDTIP1	PTGWDTIP0	_	PTGSTEPIP2	PTGSTEPIP1	PTGSTEPIP0	_	_	_	_	4440
IPC37	088A	_	—	_	_	_	PTG3IP2	PTG3IP1	PTG3IP0	_	PTG2IP2	PTG2IP1	PTG2IP0	_	PTG1IP2	PTG1IP1	PTG1IP0	0444
INTTREG	08C8	_	_	_	_	ILR3	ILR2	ILR1	ILR0	VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The PMPIF/PMPIE/PMPIPx flags are not available on 44-pin devices.

2: The RTCCIF/RTCCIE/RTCCIPx flags are not available on 44-pin devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	_	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
			_	PPST3	PPST2	PPST1	PPST0	
bit 7							bit 0	
r								
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknown				
bit 15-4	Unimplemen	ted: Read as '	0'					
bit 3	PPST3: Char	nnel 3 Ping-Po	ng Mode Statu	is Flag bit				
	1 = DMA3ST	B register is se	elected					
	0 = DMA3ST	A register is se	elected					
bit 2	PPST2: Char	nnel 2 Ping-Po	ng Mode Statu	is Flag bit				
	1 = DMA2ST	B register is se	elected					
	0 = DMA2ST	A register is se	elected					
bit 1	PPST1: Char	nnel 1 Ping-Po	ng Mode Statu	is Flag bit				
	1 = DMA1ST	B register is se	elected					
	0 = DMA1ST	A register is se	elected					
hit 0	PPSTO Char	nel 0 Pina-Po	utet2 aboM on	is Flag hit				

bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit

1 = DMA0STB register is selected

0 = DMA0STA register is selected

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 16-9: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	_	—	CHOPCLK9	CHOPCLK8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CHOPCLK7 | CHOPCLK6 | CHOPCLK5 | CHOPCLK4 | CHOPCLK3 | CHOPCLK2 | CHOPCLK1 | CHOPCLK0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CHPCLKEN: Enable Chop Clock Generator bit
	1 = Chop clock generator is enabled
	0 = Chop clock generator is disabled
bit 14-10	Unimplemented: Read as '0'
bit 9-0	CHOPCLK<9:0>: Chop Clock Divider bits
	The frequency of the chop clock signal is given by the following expression: Chop Frequency = (FP/PCLKDIV<2:0>)/(CHOP<9:0> + 1)

REGISTER 16-10: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

17.1 QEI Control Registers

REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN	—	QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ^(2,4)	IMV0 ^(2,4)
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	QEIEN: QEIx Module Counter Enable bit
	1 = Module counters are enabled
	0 = Module counters are disabled, but SFRs can be read or written to
bit 14	Unimplemented: Read as '0'
bit 13	QEISIDL: QEIx Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-10	PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾
	111 = Reserved
	110 = Modulo Count mode for position counter
	101 = Resets the position counter when the position counter equals the QEIxGEC register
	100 = Second index event after home event initializes the position counter with contents of the QEIxIC register
	011 = First index event after home event initializes the position counter with contents of the QEIxIC register
	010 = Next index input event initializes the position counter with contents of the QEIxIC register
	001 = Every index input event resets the position counter
	000 = Index input event does not affect position counter
bit 9-8	IMV<1:0>: Index Match Value bits ^(2,4)
	 1 = Required state of Phase B input signal for match on index pulse 0 = Required state of Phase A input signal for match on index pulse
bit 7	Unimplemented: Read as '0'
Note 1:	when $CGM<1:0> = 10$ or $CGM<1:0> = 11$, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEAx and QEBx values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.
- 4: The match value applies to the A and B inputs after the swap and polarity bits have been applied.

REGISTER 17-13: QEIXLECH: QEIX LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **QEILEC<31:16>:** High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

REGISTER 17-14: QEIxLECL: QEIx LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	EC<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIL	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkı	nown

bit 15-0 QEILEC<15:0>: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

19.1 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		HC = Hardwa	re Clearable bi	t			
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, reac	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	12CEN: 12Cx	Enable bit					
	1 = Enables t	he I2Cx modu	e and configur	es the SDAx a	and SCLx pins a	is serial port pir	าร
	0 = Disables 1	the I2Cx modu	le; all I [∠] C™ pir	ns are controlle	ed by port funct	ions	
bit 14	Unimplemen	ted: Read as	0'				
bit 13	I2CSIDL: 12C	x Stop in Idle I	Node bit				
	1 = Discontinues 0 = Continues	ues module oper: s module oper:	eration when c	device enters a	an Idle mode		
hit 12	SCI REL: SC	l x Release Co	ontrol bit (when	operating as	I ² C™ slave)		
Sit 12	1 = Releases	SCI x clock		operating de			
	0 = Holds SC	Lx clock low (c	clock stretch)				
	If STREN = 1	<u>:</u>					
	Bit is R/W (i.e	., software car	write '0' to init	iate stretch an	nd write '1' to rel	ease clock). Ha	ardware clears
	at the beginn address byte	reception Har	lave data byte dware clears a	transmission.	. Hardware clea	ars at the end of byte reception	of every slave
	If STREN = 0	:					
	Bit is R/S (i.e.	<u>,</u> software can	only write '1' to	o release clocl	k). Hardware cle	ears at the begi	nning of every
	slave data by	te transmissior	n. Hardware cle	ears at the end	d of every slave	address byte r	eception.
bit 11	IPMIEN: Intel	ligent Peripher	al Managemer	nt Interface (IF	MI) Enable bit ⁽¹)	
	1 = IPMI mod	e is enabled; a	all addresses a	re Acknowled	ged		
h# 10			- h:4				
DIE TU		Slave Address	s Dil				
	1 = 12CXADD 0 = 12CXADD	is a 7-bit slave	e address				
bit 9	DISSLW: Disa	able Slew Rate	e Control bit				
	1 = Slew rate	control is disa	bled				
	0 = Slew rate	control is enal	bled				
bit 8	SMEN: SMBL	us Input Levels	bit				
	1 = Enables I	O pin thresho	lds compliant v	vith the SMBu	s specification		
	0 = Disables \$	SMBus input t	hresholds				
dit 7	GCEN: Gene	ral Call Enable	bit (when ope	rating as I ² C s	slave)		in an ability of C
	⊥ = Enables i recention	interrupt when	a general call	address is rec	eived in the I2C	XKSK (module	is enabled for
	0 = General (., call address is	disabled				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware sets or clears after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware sets when I2CxRCV is written with a received byte. Hardware clears when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.

REGISTER 21-10: C	CREATER OF SECONDARY CONFIGURATION REGISTER 2
-------------------	--

r									
U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x		
—	WAKFIL	—	—	—	SEG2PH2	SEG2PH1	SEG2PH0		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0		
bit 7							bit 0		
									
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	Unimplemen	ted: Read as '	כ'						
bit 14	WAKFIL: Sele	ect CAN Bus L	ine Filter for V	/ake-up bit					
	1 = Uses CAN	N bus line filter	for wake-up						
hit 13₋11	0 = CAN bus line filter is not used for wake-up								
bit 10-8	SEC2DU -2:0. · Dhasa Sagmant 2 hits								
bit 10-0	111 = 1 enoth	is 8 x To							
	•								
	•								
	•	:. 1 T o							
h :+ 7				-4 1- 14					
DIT /	SEG2PHIS:	Phase Segmer	it 2 Time Sele	Ct DIt					
	1 = Freely pro-0 = Maximum	of SEG1PHx b	oits or Informa	tion Processin	a Time (IPT), w	hichever is are	ater		
bit 6	SAM: Sample	e of the CAN Bu	us Line bit		5				
	1 = Bus line is	s sampled three	e times at the	sample point					
	0 = Bus line is	s sampled once	e at the sample	e point					
bit 5-3	SEG1PH<2:0	>: Phase Segn	nent 1 bits						
	111 = Length	is 8 x Tq							
	•								
	•								
	000 = Length	is 1 x Tq							
bit 2-0	PRSEG<2:0>	: Propagation	Time Segmen	t bits					
	111 = Length	is 8 x Tq							
	•								
	•								
	000 = Length	is 1 x Tq							
	2								

BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 7<15:8>: CANx Message Byte 7

bit 7-0 Byte 6<7:0>: CANx Message Byte 6

BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—			FILHIT<4:0>(1)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

23.3 ADCx Control Registers

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 HC HS	R/C-0 HC HS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽²⁾
bit 7							bit 0

Legend:	C = Clearable bit	U = Unimplemented bit, read as '0'			
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	ADON: AD	OCx Operating Mode bit		
	1 = ADCx	module is operating		
	0 = ADCx	IS Off		
bit 14	Unimplem	ented: Read as '0'		
bit 13	ADSIDL: A	ADCx Stop in Idle Mode I	bit	
	1 = Discon 0 = Contin	tinues module operation ues module operation in	when device enters Idle mode)
bit 12	ADDMABI	M: ADCx DMA Buffer Bu	ild Mode bit	
	1 = DMA chann 0 = DMA the DM	buffers are written in the el that is the same as the buffers are written in Sca MA channel based on the	e order of conversion; the mo e address used for the non-DM atter/Gather mode; the module	dule provides an address to the DMA A stand-alone buffer provides a Scatter/Gather address to the size of the DMA buffer
bit 11	Unimplem	ented: Read as '0'		
bit 10	AD12B: 10)-Bit or 12-Bit ADCx Ope	eration Mode bit	
	1 = 12-bit,	1-channel ADCx operati	on	
	0 = 10-bit,	4-channel ADCx operati	on	
bit 9-8	FORM<1:0)>: Data Output Format I	oits	
	For 10-Bit	Operation:		
	11 = Signe	ed fractional (DOUT = sdo	d ddd dd00 0000, where	s = .NOT.d<9>)
	10 = Fract	Ional (DOUT = dddd ddd	id dd00 0000)	- NOT $d<0>$
	01 = Signe 00 = Intege	er (Dout = 0000 00dd	dddd dddd)	
	For 12-Bit	Operation:	,	
	11 = Signe	ed fractional (DOUT = sdo	ld dddd dddd 0000, where	s = .NOT.d<11>)
	10 = Fract	ional (DOUT = dddd ddd	ld dddd 0000)	
	01 = Signe	er (Dout = 0000 dada	sada dddd dddd, Where s	= .NU1.a<11>)
	oo – meg		uuu uuu	
Note 1:	See Section	25.0 "Peripheral Trigge	er Generator (PTG) Module"	for information on this selection.

2: Do not clear the DONE bit in software if ADCx Sample Auto-Start bit is enabled (ASAM = 1).

25.2 PTG Control Registers

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER

	11.0	D/M/ 0		11.0			P/M/ 0
	0-0			0-0			
PIGEN		PIGSIDL	PIGIOGL		PIGSWI	PIGSSEN	PIGIVIS
DIC 15							DIL 8
D/M/ 0				11.0		D/M/ 0	DAM 0
		0-0	0-0	0-0	0-0		
bit 7	FIGWDIO		—	_	—	FIGHMIN	FIGITIVIO ⁽⁾
							bit 0
l egend:		HS = Hardware	Settable bit				
R = Readabl	e bit	W = Writable bi	it	U = Unimpler	mented bit rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown
				o Dicio die			
bit 15	PTGEN. PTG	Module Enable	• hit				
Sit 10	1 = PTG mod	ule is enabled					
	0 = PTG mod	lule is disabled					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	PTGSIDL: P	TG Stop in Idle N	/lode bit				
	1 = Discontin	ues module ope	ration when de	vice enters Idl	e mode		
	0 = Continue	s module operat	ion in Idle mod	e			
bit 12	PTGTOGL: F	PTG TRIG Outpu	ut Toggle Mode	bit			
	1 = Toggles f	the state of the F		h execution of	the PTGTRIG C	command	rmined by the
	value in f	the PTGPWDx b	oits	and will genera	ite a single PTC	SOX puise dele	mined by the
bit 11	Unimplemen	ted: Read as '0	,				
bit 10	PTGSWT: PT	G Software Tric	laer bit ⁽²⁾				
	1 = Triggers t	he PTG module					
	0 = No action	(clearing this bi	t will have no e	effect)			
bit 9	PTGSSEN: F	TG Enable Sing	gle-Step bit				
	1 = Enables S	Single-Step mod	le				
		Single-Step mod					
bit 8	PIGIVIS: PI	G Counter/ lime	r Visibility Cont		registere retur	n the ourrest .	values of their
		nding Counter/T	imer registers	OPTGSD PTG	Cx PTGTx)	n the current w	alues of their
	0 = Reads of	f the PTGSDLIM	I, PTGCxLIM or	r PTGTxLIM re	gisters return t	he value previo	usly written to
	those PT	G Limit register	S				
bit 7	PTGSTRT: Start PTG Sequencer bit						
	1 = Starts to sequentially execute commands (Continuous mode)						
	0 = Stops exe	ecuting comman	ds	o			
Dit 6	PTGWDTO:	PIG Watchdog	Timer Time-out	Status bit			
	1 = PIG Wat 0 = PTG Wat	chdog Timer has	s timed out				
bit 5-2		ited: Read as '0	,				
Note 1: T	hese bits apply t	to the PTGWHI a	nd PTGWLO cor	mmands only.			

2: This bit is only used with the PTGCTRL Step command software trigger option.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0		
—	—	—	-	CVRR1	VREFSEL	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-12	Unimplemen	ted: Read as ')'						
bit 11	CVRR1: Com	parator Voltage	e Reference F	Range Selectio	n bit				
	See bit 5.								
bit 10	VREFSEL: Vo	oltage Referend	ce Select bit						
	1 = CVREFIN = 0 = CVREFIN i	= VREF+ s generated by	the resistor r	etwork					
hit 9-8		ted: Read as '	יי ז'						
bit 7	CVREN: Com	narator Voltag	- Reference F	nable bit					
bit /	1 = Comparat	for voltage refe	rence circuit is	s powered on					
	0 = Comparat	tor voltage refe	rence circuit is	s powered dov	vn				
bit 6	CVROE: Corr	parator Voltag	e Reference (Dutput Enable	on CVREF10 Pir	n bit			
	1 = Voltage le	vel is output or	the CVREF1	o pin					
	0 = Voltage le	vel is disconne	cted from the	CVREF10 pin					
bit 11, 5	CVRR<1:0>:	Comparator Vo	ltage Referer	nce Range Sel	ection bits				
	11 = 0.00 CV	RSRC to 0.94, w	/ith CVRSRC/1	6 step-size					
	10 = 0.33 CV	RSRC to 0.90, w	/ith CVRSRC/2	4 step-size					
	00 = 0.25 CV	RSRC to 0.75, w	ith CVRSRC/3	2 step-size					
bit 4	CVRSS: Com	parator Voltage	e Reference S	Source Selection	on bit				
	1 = Comparat	tor voltage refe	rence source,	CVRSRC = CV	REF+ – AVSS				
	0 = Comparat	tor voltage refe	rence source,	CVRSRC = AV	DD – AVSS				
bit 3-0	CVR<3:0> Comparator Voltage Reference Value Selection $0 \le CVR<3:0> \le 15$ bits								
	When $CVRK<1:0> = 11:$ $CVRFF = (CVR<3:0>(16) \bullet (CVRSPC)$								
	When CVRR	<1:0> = 10:							
	$\overline{\text{CVREF}} = (1/3)$	• (CVRSRC) +	(CVR<3:0>/24	4) • (CVRSRC)					
	When CVRR<1:0> = 01:								
	CVREF = (CVI	R<3:0>/24) • (0	CVRSRC)						
	When CVRR	<1:0> = 00:		$(\mathbf{O}) = (\mathbf{O})$					
	CVREF = (1/4)	$\bullet (UVRSRC) +$	(UVR<3:0>/3)	∠) ● (UVRSRC)					

REGISTER 26-7: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

27.1 Writing to the RTCC Timer

Note:	To allow the RTCC module to be
	clocked by the secondary crystal oscil-
	lator, the Secondary Oscillator Enable
	(LPOSCEN) bit in the Oscillator Control
	(OSCCON<1>) register must be set. For
	further details, refer to the "dsPIC33/
	PIC24 Family Reference Manual",
	"Oscillator" (DS70580).

The user application can configure the time and calendar by writing the desired seconds, minutes, hours, weekday, date, month and year to the RTCC registers. Under normal operation, writes to the RTCC Timer registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To write to the RTCC register, the RTCWREN bit (RCFGCAL<13>) must be set. Setting the RTCWREN bit allows writes to the RTCC registers. Conversely, clearing the RTCWREN bit prevents writes.

To set the RTCWREN bit, the following procedure must be executed. The RTCWREN bit can be cleared at any time:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Set the RTCWREN bit using a single-cycle instruction.

The RTCC module is enabled by setting the RTCEN bit (RCFGCAL<15>). To set or clear the RTCEN bit, the RTCWREN bit (RCFGCAL<13>) must be set.

If the entire clock (hours, minutes and seconds) needs to be corrected, it is recommended that the RTCC module should be disabled to avoid coincidental write operation when the timer increments. Therefore, it stops the clock from counting while writing to the RTCC Timer register.

27.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en554310

27.2.1 KEY RESOURCES

- "Real-Time Clock and Calendar (RTCC)" (DS70584) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾		—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	-	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	-	-	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	-	-	V	ІОн ≥ 15 mA, VDD = 3.3V (Note 1)
HDO20A Voi	VoH1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)
			2.0	-	-		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V (Note 1)
	Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	-	-	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)	
			2.0				IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)
			3.0				IOH ≥ -3 mA, VDD = 3.3V (Note 1)

TABLE 34-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

3: Includes the following pins:

For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3> **For 64-pin devices:** RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7> **For 100-pin devices:** RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 34-9: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +150°C ⁽²⁾
HD134	Tretd	Characteristic Retention	20	_	_	Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N	64		
Lead Pitch	е	0.50 BSC		
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2