

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I2S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm306-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGM3XX/ 6XX/7XX devices is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGM3XX/ 6XX/7XX devices contain control registers for Modulo

Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT	DO Loop Count register
DOSTARTH ⁽¹⁾ , DOSTARTL ⁽¹⁾	DO Loop Start Address register (High and Low)
DOENDH, DOENDL	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: The DOSTARTH and DOSTARTL registers are read-only.

FIGURE 4-7: DATA MEMORY MAP FOR 512-KBYTE DEVICES

REGISTER 8-2: DMAXREQ: DMA CHANNEL X IRQ SELECT REGISTER

D/S 0	11.0	11.0	11.0	11.0	11.0	11.0	11.0		
	0-0	0-0	0-0	0-0	0-0	0-0	0-0		
FURCE	—	—		_		_	—		
DIT 15							DIT 8		
]		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQSEL7	IRQSEL6	IRQSEL5	IRQSEL4	IRQSEL3	IRQSEL2	IRQSEL1	IRQSEL0		
bit 7							bit 0		
Legend:	end: S = Settable bit								
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15	FORCE: Forc	e DMA Transfe	er bit ⁽¹⁾						
	1 = Forces a	single DMA tra	insfer (Manua	I mode)					
	0 = Automatio	c DMA transfer	initiation by D	DMA request					
bit 14-8	Unimplement	ted: Read as ')'						
bit 7-0	IRQSEL<7:0>	-: DMA Periphe	eral IRQ Num	ber Select bits					
	01011011 = \$	SPI3 – Transfe	r done						
	01011001 =	UART4TX – U/	ART4 transmit	tter					
	01011000 =	UART4RX – U	ART4 receiver	r					
	01010011 =	UART3TX – U/	ART3 transmit	tter					
	01010010 =	UART3RX – U	ART3 receiver	r					
	01000111 = 0	CAN2 – TX dat	a request						
	01000110 = 0	CAN1 – TX dat	a request						
	00111100 = 1	DCI – Codec tr	anster done						
	00110111 = 0	CANZ - RX 0a DMD - DMD da	la ready						
	00101101 = 1	IC4 – Input Ca	oture 4						
	00100101 =	IC3 – Input Ca	oture 3						
	00100010 = 0	CAN1 – RX da	ta ready						
	00100001 = \$	SPI2 – SPI2 tra	ansfer done						
	00011111 =	UART2TX – U/	ART2 transmit	tter					
	00011110 =	UART2RX – U	ART2 receive	r					
	00011100 =	TMR5 – Timer	5						
	00011011 =	TMR4 – Timer4	1						
	00011010 = 0	OC4 – Output	Compare 4						
	00011001 = 0		Compare 3						
	00010101 = 1		convert done						
	00001101 = 1	HART1TX - H	ART1 transmit	ter					
	00001100 = 00001011 = 10000000000000000	UART1RX - U	ART1 receiver	r					
	00001010 = 3	SPI1 – SPI1 tra	ansfer done						
	00001000 =	TMR3 – Timer3	3						
	00000111 =	TMR2 – Timer2	2						
	00000110 = 0	OC2 – Output	Compare 2						
	00000101 =	IC2 – Input Ca	oture 2						
	00000010 = 0	OC1 – Output	Compare 1						
	0000001 =	IC1 – Input Ca	oture 1						
	00000000 = I	IN I U – Externa	i interrupt 0						

Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

© 2013-2014 Microchip Technology Inc.

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15	•	•			•		bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STA<	23:16>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: DMA Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 STA<15:0>: DMA Primary Start Address bits (source or destination)

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code or a complete redesign may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the A/D Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Input Capture 5	IC5	RPINR9	IC5R<6:0>
Input Capture 6	IC6	RPINR9	IC6R<6:0>
Input Capture 7	IC7	RPINR10	IC7R<6:0>
Input Capture 8	IC8	RPINR10	IC8R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index	INDX1	RPINR 15	INDX1R<6:0>
QEI1 Home	HOME1	RPINR15	HOM1R<6:0>
QEI2 Phase A	QEA2	RPINR16	QEA2R<6:0>
QEI2 Phase B	QEB2	RPINR16	QEB2R<6:0>
QEI2 Index	INDX2	RPINR17	INDX2R<6:0>
QEI2 Home	HOME2	RPINR17	HOM2R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
DCI Data Input	CSDI	RPINR24	CSDIR>6:0>
DCI Clock Input	CSCK	RPINR24	CSCKR<6:0>
DCI Frame Synchronization Input	COFS	RPINR25	COFSR<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
CAN2 Receive ⁽²⁾	C2RX	RPINR26	C2RXR<6:0>
UART3 Receive	U3RX	RPINR27	U3RXR<6:0>
UART3 Clear-to-Send	U3CTS	RPINR27	U3CTSR<6:0>
UART4 Receive	U4RX	RPINR28	U4RXR<6:0>
UART4 Clear-to-Send	U4CTS	RPINR28	U4CTSR<6:0>
SPI3 Data Input	SDI3	RPINR29	SDI3R<6:0>
SPI3 Clock Input	SCK3	RPINR29	SCK3R<6:0>
SPI3 Slave Select	SS3	RPINR 30	SS3R<6:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input is available on dsPIC33EPXXXGM6XX/7XX devices only.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
input Italito		Regional	eeningalaalen Elle
PWM Sync Input 1	SYNCI1	RPINR37	SYNCI1R<6:0>
PWM Dead-Time Compensation 1	DTCMP1	RPINR38	DTCMP1R<6:0>
PWM Dead-Time Compensation 2	DTCMP2	RPINR39	DTCMP2R<6:0>
PWM Dead-Time Compensation 3	DTCMP3	RPINR39	DTCMP3R<6:0>
PWM Dead-Time Compensation 4	DTCMP4	RPINR40	DTCMP4R<6:0>
PWM Dead-Time Compensation 5	DTCMP5	RPINR40	DTCMP5R<6:0>
PWM Dead-Time Compensation 6	DTCMP6	RPINR41	DTCMP6R<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input is available on dsPIC33EPXXXGM6XX/7XX devices only.

REGISTER 11-34: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP43R<5:0>						
bit 15		·					bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP42R	<5:0>				
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown						
bit 15-14	Unimpleme	ented: Read as '	0'						
bit 13-8	RP43R<5:0	>: Peripheral Ou	Itput Function	n is Assigned to R	P43 Output	Pin bits			

Unimplemented: Read as '0'
RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

(see Table 11-3 for peripheral function numbers)

REGISTER 11-35: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP49R<5:0>						
bit 15		·					bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			RP48R	<5:0>				
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'			
-n = Value at P	OR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown						
<u></u>									
1 11 A E A A			~ '						

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP49R<5:0>:** Peripheral Output Function is Assigned to RP49 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP48R<5:0>:** Peripheral Output Function is Assigned to RP48 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

- bit 6-4
 SYNCSRC<2:0>: Synchronous Source Selection bits⁽¹⁾

 111 = Reserved
 ...

 ...
 ...

 100 = Reserved
 011 = PTGO17⁽²⁾

 010 = PTGO16⁽²⁾
 001 = Reserved

 000 = SYNCI1
 bit 3-0

 SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾

 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event

 ...

 0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event

 ...

 0001 = 1:1 Postscaler generates Special Event Trigger on every second compare match event
- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

21.3 CAN Control Registers

REGISTER 21-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0
bit 15							bit 8
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE2	OPMODE1	OPMODE0	—	CANCAP	—	—	WIN
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown
bit 15-14	Unimplemen	ted: Read as '0	3				

	I
bit 13	CSIDL: CANx Stop in Idle Mode bit
	1 = Discontinues module operation when device enters Idle mode
	0 = Continues module operation in Idle mode
bit 12	ABAT: Abort All Pending Transmissions bit
	1 = Signals all transmit buffers to abort transmission
	0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit
	1 = FCAN is equal to 2 * FP
	0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits
	111 = Set Listen All Messages mode
	110 = Reserved
	101 = Reserved 100 = Set Configuration mode
	011 = Set Listen Only mode
	010 = Set Loopback mode
	001 = Set Disable mode
	000 = Set Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits
	111 = Module is in Listen All Messages mode
	110 = Reserved
	100 = Module is in Configuration mode
	011 = Module is in Listen Only mode
	010 = Module is in Loopback mode
	001 = Module is in Disable mode
	000 = Module is in Normal Operation mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit
	1 = Enables input capture based on CAN message receive
	0 = Disables CAN capture
bit 2-1	Unimplemented: Read as '0'
bit 0	WIN: SFR Map Window Select bit
	1 = Uses filter window
	0 = Uses buffer window

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0
bit 15		-					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is				x = Bit is unkr	nown		

REGISTER 21-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

bit 15-12	F15BP<3:0>: RX Buffer Mask for Filter 15 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)
bit 7-4	F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)
bit 3-0	F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
_	—	—	—	—	—	—	ADDMAEN		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	_		—	—	DMABL2	DMABL1	DMABL0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimple	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as '0)'						
bit 8	ADDMAEN: A	ADCx DMA Ena	ble bit						
	1 = Conversio 0 = Conversio	on results are st n results are sto	ored in the AD red in the ADC	C1BUF0 regis 1BUF0 throug	ster for transfer h ADC1BUFF re	to RAM using egisters; DMA v	DMA vill not be used		
bit 7-3	Unimplemen	ted: Read as 'o)'						
bit 2-0) DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits								
	 111 = Allocates 128 words of buffer to each analog input 110 = Allocates 64 words of buffer to each analog input 101 = Allocates 32 words of buffer to each analog input 100 = Allocates 16 words of buffer to each analog input 								

REGISTER 23-4: ADxCON4: ADCx CONTROL REGISTER 4

- 011 =Allocates 8 words of buffer to each analog input
- 010 =Allocates 0 words of bullet to each analog input 010 = Allocates 4 words of buffer to each analog input
- 001 =Allocates 2 words of buffer to each analog input
- 000 = Allocates 1 word of buffer to each analog input

							D 444 0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS			
bit 15							bit 8			
	D 444 0	D 444 0	D M M	D 444 0	5444.0		D 444 0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0			
OC4CS	OC3CS	OC2CS	OC1CS	OC41SS	OC31SS	OC21SS	OCTISS			
bit 7	bit 7									
Lanaudi										
Legena:			1.11							
R = Readar		vv = vvritable	DIT		nented bit, read					
-n = Value a	at POR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	nown			
6:4 <i>4</i> F		mala Trianar D								
DIL 15	1 = Conorato	s trigger when	the broadcast	JCX DIL t command is c	vocutod					
	0 = Does not	aenerate triage	er when the b	roadcast comm	nand is executed	d				
bit 14	ADCTS3: Sa	mple Trigger P	TGO14 for AI	Cx bit		-				
	1 = Generate	s trigger when	the broadcas	t command is e	executed					
	0 = Does not	generate trigge	er when the b	roadcast comm	nand is executed	d				
bit 13	ADCTS2: Sa	mple Trigger P	TGO13 for Al	DCx bit						
	1 = Generate	s trigger when	the broadcas	t command is e	executed					
	0 = Does not	generate trigge	er when the b	roadcast comm	nand is executed	d				
bit 12	ADCTS1: Sa	mple Trigger P	TGO12 for AI	DCx bit						
	1 = Generate	s trigger when	the broadcas	t command is e	executed	d				
hit 11	ICATSS: Trig	generate trigge	ation Source	for IC4 bit		L				
	1 = Generate	s trigger/synch	ronization wh	en the broadca	est command is	executed				
	0 = Does not	generate trigge	er/synchroniza	ation when the	broadcast com	mand is execut	ed			
bit 10	IC3TSS: Trigg	ger/Synchroniz	ation Source	for IC3 bit						
	1 = Generate 0 = Does not	s trigger/synch generate trigge	ronization wh er/svnchroniza	en the broadca ation when the	est command is broadcast comr	executed mand is execut	ed			
hit 9	IC2TSS: Trig	ger/Synchroniz	ation Source	for IC2 bit						
2.1.0	1 = Generate	s trigger/synch	ronization wh	en the broadca	ast command is	executed				
	0 = Does not	generate trigge	er/synchroniza	ation when the	broadcast com	nand is execute	ed			
bit 8	IC1TSS: Trigg	ger/Synchroniz	ation Source	for IC1 bit						
	1 = Generate 0 = Does not	s trigger/synch generate trigge	ronization wh er/synchroniza	en the broadca ation when the	ist command is broadcast comr	executed mand is execut	ed			
bit 7	OC4CS: Cloc	k Source for C	C4 bit							
	1 = Generate 0 = Does not	s clock pulse w generate clock	/hen the broa	dcast comman he broadcast c	d is executed command is exe	cuted				
bit 6	OC3CS: Cloc	k Source for C	C3 bit							
	1 = Generate	s clock pulse w	hen the broa	dcast comman	d is executed					
	0 = Does not	generate clock	pulse when t	he broadcast o	command is exe	cuted				
bit 5	OC2CS: Cloc	k Source for O	C2 bit							
	1 = Generate	s clock pulse w	hen the broa	dcast comman	d is executed	cuted				
	0 - 2063 100	generale ciuch				Guildu				
Note 1: 7	This register is rea PTGSTRT = 1).	id-only when th	e PTG modul	e is executing	Step commands	3 (PTGEN = 1 a	and			
o				DET 011 1111	Chan again					

REGISTER 25-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 27-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0 U-0 R/W-x R/W-x		R/W-x	
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legena:			
R = Readable bit V	V = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR '1	1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
-----------	----------------------------

bit 10-8 **WDAY<2:0>:** Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.

bit 7-6 Unimplemented: Read as '0'

- bit 5-4 **HRTEN<1:0>:** Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
- bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

28.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Parallel Master Port (PMP)" (DS70576), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

TABLE 33-50: CANx MODULE I/O TIMING REQUIREMENTS

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions				Conditions
CA10	TIOF	Port Output Fall Time	_	_	_	ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time	—	—		ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 33-36: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 33-51: UARTx MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standa (unless Operation	rd Opera otherwi ng tempe	i ting Co se state erature	nditions: d) -40°C ≤	: 3.0V to 3.6V ≲ TA ≤ +125°C
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67	_	_	ns	
UA11	FBAUD	UARTx Baud Frequency	_	—	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS			Standar (unless Operatin	d Opera otherwi g tempe	ting Con se stated rature	ditions J) ⁽¹⁾ -40°C ≤ -40°C ≤	: 3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC A	ccuracy (10-Bit N	lode)		
AD20b	Nr	Resolution	10) Data B	its	bits	
AD21b	INL	Integral Nonlinearity	-0.625		0.625	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (Note 2)}$
			-1.5		1.5	LSb	+85°C < TA \leq +125°C (Note 2)
AD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$
			-0.25	_	0.25	LSb	+85°C < TA ≤ +125°C (Note 2)
AD23b	Gerr	Gain Error	-2.5	—	2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-2.5	_	2.5	LSb	+85°C < TA ≤ +125°C (Note 2)
AD24b	EOFF	Offset Error	-1.25	—	1.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-1.25		1.25	LSb	+85°C < TA ≤ +125°C (Note 2)
AD25b		Monotonicity	_	—		—	Guaranteed
		Dynamic P	erforman	ce (10-E	Bit Mode)	
AD30b	THD	Total Harmonic Distortion ⁽³⁾		64		dB	
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	—	57	—	dB	
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	_	72	_	dB	
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	—	550		kHz	
AD34b	ENOB	Effective Number of Bits ⁽³⁾	—	9.4	_	bits	

TABLE 33-58: ADCx MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, may have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

34.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGM3XX/6XX/7XX electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 33.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 33.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGM3XX/6XX/7XX high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when $V_{DD} \ge 3.0V^{(3)}$	0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 34-2).

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimensior	Dimension Limits		nits MIN NOM MAX	
Contact Pitch	E1	0.80 BSC		
Contact Pitch	E2	0.80 BSC		
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Diameter (X121)	X			0.32

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-507-9

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.