

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512КВ (170К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm306t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Data Address Space

The dsPIC33EPXXXGM3XX/6XX/7XX CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-5 through Figure 4-7.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a Base Data Space address range of 64 Kbytes or 32K words.

The Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGM3XX/6XX/7XX devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGM3XX/6XX/7XX instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGM3XX/6XX/7XX core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

4.2.5 X AND Y DATA SPACES

The dsPIC33EP core has two Data Spaces: X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. The X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

TABLE 4-8: PWM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0C02	—	PCLKDIV<2:0> 00													0000		
PTPER	0C04	PTPER<15:0>														00F8		
SEVTCMP	0C06	SEVTCMP<15:0> 00												0000				
MDC	0C0A	MDC<15:0> 01													0000			
STCON	0C0E	_	-	_	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYNCSRC2	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
STCON2	0C10	_	-	_	_		-	_	_	_	_	_	_	_	F	PCLKDIV<2:0>	>	0000
STPER	0C12									STPEF	R<15:0>							0000
SSEVTCMP	0C14									SSEVTC	MP<15:0>							0000
CHOP	0C1A	CHPCLKEN	-	_	_		-	CHOPCLK9	CHOPCLK8	CHOPCLK7	CHOPCLK6	CHOPCLK5	CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	0000
PWMKEY	0C1E									PWMKE	Y<15:0>							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: PWM GENERATOR 1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON1	0C24	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0C26	PDC1<15:0> FI													FFF8			
PHASE1	0C28								PHAS	SE1<15:0>								0000
DTR1	0C2A	_	DTR1<13:0> 000											0000				
ALTDTR1	0C2C	ALTDTR1<13:0>														0000		
SDC1	0C2E		SDC1<15:0>														0000	
SPHASE1	0C30								SPHA	SE1<15:0>								0000
TRIG1	0C32								TRGC	MP<15:0>								0000
TRGCON1	0C34	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP1	0C38								PWMC	AP1<15:0>								0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	C LEB<11:0> 0000																
AUXCON1	0C3E		—	—	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
Legend:		nimplomon	tod road a	· · · · · Posot	values are	chown in hova	docimal	•	•		•			•		•	•	

DS70000689D-page 57

TABLE 4-23: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	—	-	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	-	CANCAP	—	-	WIN	0480
C1CTRL2	0402	—	—	—	_	—	—	—	_	_	_	_			DNCNT<4:0>			0000
C1VEC	0404	_	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0040
C1FCTRL	0406	DMABS2	DMABS1	DMABS0	—	—	—	—	—	_	_	_	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C1FIFO	0408	—	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	_	-	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C1INTF	040A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	—	_	—	—	—	—	—	_	IVRIE	WAKIE	ERRIE	-	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C1CFG1	0410	_	_	_	_	—	_	_	_	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C1CFG2	0412	—	WAKFIL	—	—	—	SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C1FEN1	0414								FLTE	N<15:0>								FFFF
C1FMSKSEL1	0418	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C1FMSKSEL2	041A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-24: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							Se	e definition	when WIN =	- x							
C1RXFUL1	0420		RXFUL<15:0> 0000															
C1RXFUL2	0422		RXFUL<31:16> 0000															
C1RXOVF1	0428		RXOVF<15:0> 000														0000	
C1RXOVF2	042A		RXOVF<31:16> 01														0000	
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PRI1	TX1PRI0	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PRI1	TX0PRI0	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PRI1	TX3PRI0	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PRI1	TX2PRI0	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PRI1	TX5PRI0	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PRI1	TX4PRI0	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PRI1	TX7PRI0	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PRI1	TX6PRI0	xxxx
C1RXD	0440		CAN1 Receive Data Word x														xxxx	
C1TXD	0442							C	AN1 Transn	nit Data Wo	rd							xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-61: PORTG REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60					TRISG<1	5:6>					_			TRISC	6<3:0>		03C0
PORTG	0E62					-			RG<	3:0>		xxxx						
LATG	0E64				_	_		LATG	<3:0>		xxxx							
ODCG	0E66					ODCG<1	5:6>					_	_		ODCO	i<3:0>		0000
CNENG	0E68					CNIEG<1	5:6>					_	_		CNIEC	6<3:0>		0000
CNPUG	0E6A					CNPUG<1	5:6>					_	_		CNPU	G<3:0>		0000
CNPDG	0E6C		CNPDG<15:6>									_	_		CNPD	G<3:0>		0000
ANSELG	0E6E	ANSG15	_	_	_			ANSG<	11:6>			_	_	ANSG	<3:2>	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-62: PORTG REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	—	—	—	—	—	—		TRISC	6<9:6>		—	—	—	—	—	—	03C0
PORTG	0E62	_	_	_	_	_	_		RG<	:9:6>		_	_	_	_	_	_	xxxx
LATG	0E64	_	_	_	_	_	_		LATG	<9:6>		_	_	_	_	_	_	xxxx
ODCG	0E66	_	_	_	_	_	_		ODCO	6<9:6>		_	_	_	_	_	_	0000
CNENG	0E68	_	_	_	_	_	_		CNIEC	G<9:6>		_	_	_	_	_	_	0000
CNPUG	0E6A	_	_	_	_	_	_		CNPU	G<9:6>		_	_	_	_	_	_	0000
CNPDG	0E6C	_	_	_	_	_	_	CNPDG<9:6>		_	_	_	_	_	_	0000		
ANSELG	0E6E	_	_	_	_	_	_		ANSC	6<9:6>		—	_	_	_	_	_	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-63: PAD CONFIGURATION REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	0EFE		—	—	—	—		_	_	-	—	—	_		_	RTSECSEL	PMPTTL	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms; it is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^{N}$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XB value is scaled accordingly to
	generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo	Addressing	and	Bit-Rev	ersed
	Addressi	ing can be er	abled s	simultane	ously
	using the	e same W regi	ster, bu	it Bit-Rev	ersed
	Addressi	ing operatio	n will	always	take
	preceder	nce for data w	rites w	hen enab	oled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

 bit 3
 SLEEP: Wake-up from Sleep Flag bit

 1 = Device was in Sleep mode

 0 = Device was not in Sleep mode

 bit 2
 IDLE: Wake-up from Idle Flag bit

 1 = Device was in Idle mode

 0 = Device was not in Idle mode

 0 = Device was not in Idle mode

 bit 1
 BOR: Brown-out Reset Flag bit

 1 = A Brown-out Reset has occurred

 0 = A Brown-out Reset has not occurred

bit 0 **POR:** Power-on Reset Flag bit

- 1 = A Power-on Reset has occurred
- 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
CAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	—
CAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)
CAN2 – RX Data Ready	00110111	0X0540(C2RXD)	—
CAN2 – TX Data Request	01000111	—	0X0542(C2TXD)
DCI – Codec Transfer Done	00111100	0X0290(RXBUF0)	0X0298(TXBUF0)
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	—
ADC2 – ADC2 Convert Done	00010101	0X0340(ADC2BUF0)	—
PMP – PMP Data Move	00101101	0X0608(PMPDAT1)	0X0608(PMPDAT1)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS (CONTINUED)

FIGURE 8-2: DMA CONTROLLER BLOCK DIAGRAM

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
T9MD	T8MD	T7MD	T6MD		CMPMD	RTCCMD ⁽¹⁾	PMPMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCMD	DACMD	QEI2MD	PWM2MD	U3MD	I2C3MD	I2C2MD	ADC2MD
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
1.1.45			. I I. M				
DIT 15	19MD: Timers	9 Module Disal					
	1 = 11mer9 m 0 = Timer9 m	odule is disable	ea ed				
bit 13	T8MD: Timer	8 Module Disal	ole bit				
	1 = Timer8 m	odule is disable	ed				
	0 = Timer8 m	odule is enable	ed				
bit 14	T7MD: Timer	7 Module Disal	ole bit				
	1 = Timer7 mer7	odule is disable	ed				
	0 = 1 imer 7 m	odule is enable	ed				
bit 12	16MD: Timer	6 Module Disal	ole bit				
	1 = 1 mero m 0 = Timer6 m	odule is disable	ea ed				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10	CMPMD: Cor	nparator Modu	le Disable bit				
	1 = Comparat	tor module is d	isabled				
	0 = Comparat	tor module is e	nabled				
bit 9	RTCCMD: RT	FCC Module Di	sable bit ⁽¹⁾				
	1 = RTCC mc	dule is disable	d d				
hit 0			u bla bit				
DILO	1 = PMP mod	P MOUUIE DISa Iule is disabled					
	$0 = PMP \mod 1$	lule is enabled					
bit 7	CRCMD: CR	C Module Disa	ble bit				
	1 = CRC mod	lule is disabled					
	$0 = CRC \mod$	lule is enabled					
bit 6	DACMD: DAG	C Module Disa	ble bit				
	$1 = DAC \mod 0$	lule is disabled					
bit 5		12 Module Disa	ble hit				
bit 5	1 = 0 E I 2 moo	fule is disabled					
	0 = QEI2 mod	dule is enabled	•				
bit 4	PWM2MD: P	WM2 Module E	Disable bit				
	1 = PWM2 mo	odule is disable	ed				
	0 = PWM2 mo	odule is enable	ed				

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

Note 1: The RTCCMD bit is not available on 44-pin devices.

TABLE 11-3:	OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)
IADEE II-J.	

		- ()				
Function	RPnR<5:0>	Output Name				
Default Port	000000	RPn tied to Default Pin				
U1TX	000001	RPn tied to UART1 Transmit				
U2TX	000011	RPn tied to UART2 Transmit				
SDO2	001000	RPn tied to SPI2 Data Output				
SCK2	001001	RPn tied to SPI2 Clock Output				
SS2	001010	RPn tied to SPI2 Slave Select				
CSDO	001011	RPn tied to DCI Data Output				
CSCK	001100	RPn tied to DCI Clock Output				
COFS	001101	RPn tied to DCI Frame Sync				
C1TX	001110	RPn tied to CAN1 Transmit				
C2TX	001111	RPn tied to CAN2 Transmit				
OC1	010000	RPn tied to Output Compare 1 Output				
OC2	010001	RPn tied to Output Compare 2 Output				
OC3	010010	RPn tied to Output Compare 3 Output				
OC4	010011	RPn tied to Output Compare 4 Output				
OC5	010100	RPn tied to Output Compare 5 Output				
OC6	010101	RPn tied to Output Compare 6 Output				
OC7	010110	RPn tied to Output Compare 7 Output				
OC8	010111	RPn tied to Output Compare 8 Output				
C1OUT	011000	RPn tied to Comparator Output 1				
C2OUT	011001	RPn tied to Comparator Output 2				
C3OUT	011010	RPn tied to Comparator Output 3				
U3TX	011011	RPn tied to UART3 Transmit				
U3RTS	011100	RPn tied to UART3 Ready-to-Send				
U4TX	011101	RPn tied to UART4 Transmit				
U4RTS	011110	RPn tied to UART4 Ready-to-Send				
SDO3	011111	RPn tied to SPI3 Slave Output				
SCK3	100000	RPn tied to SPI3 Clock Output				
SS3	100001	RPn tied to SPI3 Slave Select				
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output				
SYNCO2	101110	RPn tied to PWM Secondary Time Base Sync Output				
QEI1CCMP	101111	RPn tied to QEI1 Counter Comparator Output				
QEI2CCMP	110000	RPn tied to QEI2 Counter Comparator Output				
REFCLKO	110001	RPn tied to Reference Clock Output				
C4OUT	110010	RPn tied to Comparator Output 4				
C5OUT	110011	RPn tied to Comparator Output 5				

|--|

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		T2CKR<6:0>									
bit 7 bit 0											
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value a	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown					
bit 15-7	Unimpleme	nted: Read as '	0'								
bit 6-0	5-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits										
	(see Table 11-2 for input pin selection numbers)										
	1111100 = Input tied to RPI124										
	•										

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2013-2014 Microchip Technology Inc.

REGISTER 11-40: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—			RP118	3R<5:0>					
bit 15 bit 8										
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP113R<5:0>							
bit 7 bit 0										
Legend:										
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown					lown			
bit 15-14	Unimplemented: Read as '0'									
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)									
bit 7-6	Unimplemented: Read as '0'									

bit 5-0 **RP113R<5:0>:** Peripheral Output Function is Assigned to RP113 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP125R<5:0>					
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_			RP120R<5:0>					
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	ble bit U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown			nown		

REGISTER 11-41: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP125R<5:0>:** Peripheral Output Function is Assigned to RP125 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

21.3 CAN Control Registers

REGISTER 21-1: CxCTRL1: CANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0		
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0		
bit 15							bit 8		
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0		
OPMODE2	OPMODE1	OPMODE0	—	CANCAP	—	—	WIN		
bit 7							bit 0		
Legend:									
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									
bit 15-14	Unimplemen	ted: Read as '0	3						

bit 13	CSIDL: CANx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	 ABAT: Abort All Pending Transmissions bit 1 = Signals all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted
bit 11	CANCKS: CANx Module Clock (FCAN) Source Select bit 1 = FCAN is equal to 2 * FP 0 = FCAN is equal to FP
bit 10-8	REQOP<2:0>: Request Operation Mode bits 111 = Set Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Set Configuration mode 011 = Set Listen Only mode 010 = Set Loopback mode 001 = Set Disable mode 000 = Set Normal Operation mode
bit 7-5	OPMODE<2:0>: Operation Mode bits 111 = Module is in Listen All Messages mode 110 = Reserved 101 = Reserved 100 = Module is in Configuration mode 011 = Module is in Listen Only mode 010 = Module is in Loopback mode 001 = Module is in Disable mode 000 = Module is in Normal Operation mode
bit 4	Unimplemented: Read as '0'
bit 3	CANCAP: CANx Message Receive Timer Capture Event Enable bit 1 = Enables input capture based on CAN message receive 0 = Disables CAN capture
bit 2-1 bit 0	Unimplemented: Read as '0' WIN: SFR Map Window Select bit 1 = Uses filter window 0 = Uses buffer window

BUFFER 21-5: CANx MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	3<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	2<7:0>			
bit 7	bit 7						bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-8 Byte 3<15:8>: CANx Message Byte 3

bit 7-0 Byte 2<7:0>: CANx Message Byte 2

BUFFER 21-6: CANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	5<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	4<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15 9			ao Puto F				
01010-0	Dyte 5<15:0	>: CAINX Messa	уе Буlе 5				

bit 7-0 Byte 4<7:0>: CANx Message Byte 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MO	D EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 15										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2MO	D EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—			
bit 7							bit 0			
·										
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15 bit 14	EDG1MOD: E 1 = Edge 1 is 0 = Edge 1 is EDG1POL: E 1 = Edge 1 is	Edge 1 Edge Sa edge-sensitive level-sensitive dge 1 Polarity	ampling Mode : e Select bit	Selection bit						
	0 = Edge 1 is	programmed f	for a negative e	edge response						
bit 13-10	EDG1SEL<3:	: 0>: Edge 1 So	urce Select bits	S						
	1111 = FOSC 1110 = OSCI 1101 = FRC (1100 = Reser 1011 = Intern 1010 = Reser 100x = Reser 01xx = Reser 0011 = CTEE 0010 = CTEE 0001 = OC1 r 0000 = Timer	1111 = Fosc 1110 = OSCI pin 1101 = FRC oscillator 1100 = Reserved 1011 = Internal LPRC oscillator 1010 = Reserved 100x = Reserved 01xx = Reserved 0011 = CTED1 pin 0010 = CTED2 pin 0001 = OC1 module 0000 = Timer1 module								
bit 9	EDG2STAT: E	Edge 2 Status b	pit							
	Indicates the : 1 = Edge 2 h 0 = Edge 2 h	Indicates the status of Edge 2 and can be written to control the edge source. 1 = Edge 2 has occurred 0 = Edge 2 has not occurred								
bit 8	EDG1STAT: E Indicates the s 1 = Edge 1 h 0 = Edge 1 h	EDG1STAT: Edge 1 Status bit Indicates the status of Edge 1 and can be written to control the edge source. 1 = Edge 1 has occurred 0 = Edge 1 has not occurred								
bit 7	EDG2MOD: E	Edge 2 Edge Sa	ampling Mode	Selection bit						
	1 = Edge 2 is 0 = Edge 2 is	s edge-sensitive s level-sensitive	9							
bit 6	EDG2POL: E	dge 2 Polarity	Select bit							
	1 = Edge 2 is 0 = Edge 2 is	programmed f programmed f	for a positive en for a negative e	dge response edge response						
Note 1:	If the TGEN bit is EDG2SELx bits fi	set to '1', then eld; otherwise,	the CMP1 module wil	dule should be Il not function.	selected as the	e Edge 2 sourc	e in the			

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	_	_	—
bit 7							bit 0
Logondi							
R = Reada	uhle hit	W = Writable	hit	II = I Inimplen	nented hit read	l as 'N'	
-n = Value	at POR	'1' = Rit is set	bit	$0^{\circ} = \text{Bit is clear}$	ared	x = Ritis unkr	nown
					area		lowin
bit 15-10	ITRIM<5:0>:	Current Source	e Trim bits				
	011111 = Ma	iximum positive	e change from	nominal curren	t + 62%		
	011110 = Ma	iximum positive	e change from	nominal curren	t + 60%		
	•						
	•						
	000010 = M ir	nimum positive	change from r	nominal current	+ 4%		
	000001 = Mir	nimum positive	change from r	nominal current	+ 2%		
	1111111 = Mir	minal current o	e change from	nominal curren	t – 2%		
	111110 = Mi r	nimum negative	e change from	nominal curren	t – 4%		
	•						
	•						
	100010 = Ma	ximum negativ	e change from	nominal currer	nt – 60%		
	100001 = Ma	iximum negativ	e change from	nominal currer	nt – 62%		
bit 9-8	IRNG<1:0>: (Current Source	Range Select	bits			
	11 = 100 × Ba	ase Current ⁽²⁾					
	$10 = 10 \times Bas$	se Current ⁽²⁾					
	$01 = Base Cu00 = 1000 \times E$	Base Current ^{(1,}	2)				
bit 7-0	Unimplemen	ted: Read as '	0'				
Note 1:	This current range	e is not availab	le for use with	the internal ten	nperature meas	surement diode	2
2:	Refer to the CTM	U Current Sou	rce Specificatio	ons (Table 33-5	5) in Section 3	3.0 "Electrica	1
	Characteristics"	for the current	range selectio	n values.	, -		

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER⁽³⁾

3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

REGISTER 25-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			PTGQPTR<4:0	>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unk	nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-15)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	- 1)<7:0> (2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STEP(2x)<7:0> ⁽²⁾							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾
A queue location for storage of the STEP(2x +1) command byte.bit 7-0STEP(2x)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 25-1 for the Step command encoding.
 - 3: The Step registers maintain their values on any type of Reset.

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0	
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F	
bit 15							bit 8	
R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1	
OBE	OBUF	_		OB3E	OB2E	OB1E	OB0E	
bit 7							bit 0	
Legend:		HS = Hardwar	e Settable bit					
R = Readab	le bit	W = Writable I	oit	U = Unimplemented bit, read as '0'		l as '0'		
-n = Value a	t Reset	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	IBF: Input Bu	ffer Full Status	bit					
	1 = All writabl	le Input Buffer r	egisters are fu	II 				
	0 = Some or a	all of the writabl	e Input Buffer	registers are er	mpty			
bit 14 IBOV: Input Buffer Overflow Status bit								
	\perp = A write at 0 = No overflo	tempt to a full if ow occurred	iput Byte regis	ster occurred (n	nust de clearec	i in soπware)		
bit 13-12	Unimplemented: Read as '0'							
bit 11-8	IB3F:IB0F: Input Buffer x Status Full bit							
	1 = Input Buffer x contains data that has not been read (reading buffer will clear this bit)							
	0 = Input Buff	fer x does not c	ontain any unr	ead data	0	,		
bit 7	OBE: Output	Buffer Empty S	tatus bit					
	1 = All readat	ole Output Buffe	er registers are	empty				
	0 = Some or a	all of the readat	ole Output Buff	fer registers are	e full			
bit 6	OBUF: Outpu	ut Buffer Underf	low Status bit					
	1 = A read oc	curred from an	empty Output	Byte register (r	nust be cleared	d in software)		

REGISTER 28-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER (SLAVE MODE ONLY)⁽¹⁾

	0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'

- bit 3-0 **OB3E:OB0E:** Output Buffer x Status Empty bit
 - 1 = Output Buffer x is empty (writing data to the buffer will clear this bit)
 - 0 = Output Buffer x contains data that has not been transmitted

Note 1: This register is not available on 44-pin devices.

Program Address Space	
Memory Map for	
dsPIC33EP128GM3XX/6XX/7XX Devices 37	
Mamany Man for	
dsPIC33EP256GM3XX/6XX/7XX Devices38	
Memory Map for	
dsPIC33EP512GM3XX/6XX/7XX Devices39	
Program Memory	
Organization	
Reset Vector40	
Program Space	
Address Construction	
Data Access from Program Memory Lising	
Table Instructions	
Table Read Instructions	
TBLRDH102	
TBLRDL	
Programmable CRC	
Control Degistero	
Overview	
Setup Examples406	
Programmable Cyclic Redundancy Check (CRC)	
Generator 405	
PIG	
Control Registers	
Introduction	
Output Descriptions 364	
Stop Commands and Format 361	
Step Commanus and Format	
0	
Quadrature Encoder Interface (QEI)	
Control Registers 259	
R	
R	
Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
Real-Time Clock and Calender (RTCC)	
Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
Real-Time Clock and Calender (RTCC)	
Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC) 383 Referenced Sources 13 Register PTGADJ (PTG Adjust) 9 PTGL0 (PTG Literal 0) 359 PTGQPTR (PTG Step Queue Pointer) 360 PTGQUEx (PTG Step Queue x) 360 Register Maps ADC1 and ADC2 66 CAN1 (When WIN (C1CTRL) = 0 or 1) 68 CAN1 (When WIN (C1CTRL) = 1) 69 CAN2 (When WIN (C1CTRL) = 0 or 1) 70 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 1) 72 Configuration Byte 412 CPU Core 46 CTMU	
R Real-Time Clock and Calender (RTCC) 383 Referenced Sources 13 Register PTGADJ (PTG Adjust) 9 PTGL0 (PTG Literal 0) 359 PTGQPTR (PTG Step Queue Pointer) 360 PTGQUEx (PTG Step Queue x) 360 Register Maps ADC1 and ADC2 66 CAN1 (When WIN (C1CTRL) = 0 or 1) 68 CAN1 (When WIN (C1CTRL) = 0) CAN2 (When WIN (C1CTRL) = 0 or 1) 70 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 1) 72 Configuration Byte 412 CPU Core 46 CTMU 82	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC) 383 Referenced Sources 13 Register 13 PTGADJ (PTG Adjust) 359 PTGL0 (PTG Literal 0) 359 PTGQPTR (PTG Step Queue Pointer) 360 PTGQUEx (PTG Step Queue x) 360 Register Maps ADC1 and ADC2 66 CAN1 (When WIN (C1CTRL) = 0 or 1) 68 CAN1 (When WIN (C1CTRL) = 0) 68 CAN1 (When WIN (C1CTRL) = 0) 70 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 1) 72 Configuration Byte 412 CPU Core 46 CTMU 82 DCI 65 DMA Controller 83 I2C1 and I2C2 63	
Real-Time Clock and Calender (RTCC) 383 Referenced Sources 13 Register PTGADJ (PTG Adjust) 359 PTGL0 (PTG Literal 0) 359 PTGQPTR (PTG Step Queue Pointer) 360 PTGQUEx (PTG Step Queue x) 360 Register Maps ADC1 and ADC2 66 CAN1 (When WIN (C1CTRL) = 0 or 1) 68 CAN1 (When WIN (C1CTRL) = 0) 68 CAN1 (When WIN (C1CTRL) = 0) 70 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 1) 72 Configuration Byte 412 CPU Core 46 CTMU 82 DCI 65 DMA Controller 83 I2C1 and I2C2 63 Input Capture 1-8 53	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC) 383 Referenced Sources 13 Register PTGADJ (PTG Adjust) 359 PTGL0 (PTG Literal 0) 359 PTGQPTR (PTG Step Queue Pointer) 360 PTGQUEx (PTG Step Queue x) 360 Register Maps ADC1 and ADC2 66 CAN1 (When WIN (C1CTRL) = 0 or 1) 68 CAN1 (When WIN (C1CTRL) = 0) 68 CAN1 (When WIN (C1CTRL) = 1) 69 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 1) 72 Configuration Byte 412 CPU Core 46 CTMU 82 DCI 65 DMA Controller 83 12C1 and 12C2 63 Input Capture 1-8 53 Interrupt Controller 53 (dsPIC33EPXXXGM3XX Devices) 50	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC) 383 Referenced Sources 13 Register 13 PTGADJ (PTG Adjust) 359 PTGL0 (PTG Literal 0) 359 PTGQPTR (PTG Step Queue Pointer) 360 PTGQUEx (PTG Step Queue x) 360 Register Maps ADC1 and ADC2 66 CAN1 (When WIN (C1CTRL) = 0 or 1) 68 CAN1 (When WIN (C1CTRL) = 0) 68 CAN1 (When WIN (C1CTRL) = 0) 70 CAN2 (When WIN (C1CTRL) = 0 or 1) 70 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 1) 72 Configuration Byte 412 CPU Core 46 CTMU 82 DC1 65 DMA Controller 83 I2C1 and I2C2 63 Input Capture 1-8 53 Interrupt Controller 50 Interrupt Controller 50 Interrupt Controller 50 Interrup	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC)	
R Real-Time Clock and Calender (RTCC) 383 Referenced Sources 13 Register 13 PTGADJ (PTG Adjust) 359 PTGL0 (PTG Literal 0) 359 PTGQPTR (PTG Step Queue Pointer) 360 PTGQUEx (PTG Step Queue x) 360 Register Maps ADC1 and ADC2 66 CAN1 (When WIN (C1CTRL) = 0 or 1) 68 CAN1 (When WIN (C1CTRL) = 0) 68 CAN1 (When WIN (C1CTRL) = 0 or 1) 70 CAN2 (When WIN (C1CTRL) = 0 or 1) 70 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 0) 71 CAN2 (When WIN (C1CTRL) = 1) 72 Configuration Byte 412 CPU Core 46 CTMU 82 DCI 65 DMA Controller 63 Input Capture 1-8 53 Interrupt Controller 63 (dsPIC33EPXXXGM3XX Devices) 50 Interrupt Controller 82 QDAmp/Comparator 81 Output Compare 54	

 Pad Configuration
 89

 Parallel Master/Slave Port
 79

Peripheral Pin Select Input	
(dsPIC33EPGM60X/7XX Devices)	
Peripheral Pin Select Input (dsPIC33EPXXXGM3XX Devices)	77
Peripheral Pin Select Output	
(dsPIC33EPXXXGM304/604 Devices)	
Peripheral Pin Select Output	
(dsPIC33EPXXXGM306/706 Devices)	74
Peripheral Pin Select Output	75
(dsPIC33EPXXXGM310/710 Devices)	75 80
PMD (dsPIC33EPXXXGM6XX/7XX Devices)	
PORTA (dsPIC33EPXXXGM304/604 Devices)	84
PORTA (dsPIC33EPXXXGM306/706 Devices)	84
PORTA (dsPIC33EPXXXGM310/710 Devices)	84
PORTB (dsPIC33EPXXXGM304/604 Devices)	85
PORTE (dsPIC33EPXXXGM306/706 Devices)	85
PORTC (dsPIC33EPXXXGM304/604 Devices)	85
PORTC (dsPIC33EPXXXGM306/706 Devices)	86
PORTC (dsPIC33EPXXXGM310/710 Devices)	86
PORTD (dsPIC33EPXXXGM306/706 Devices)	87
PORTD (dsPIC33EPXXXGM310/710 Devices)	87
PORTE (dsPIC33EPXXXGM306/706 Devices)	88
PORTE (dsPIC33EPXXXGM310/710 Devices)	87
PORTE (dsPIC33EPXXXGM310/710 Devices)	88
PORTG (dsPIC33EPXXXGM306/706 Devices)	89
PORTG (dsPIC33EPXXXGM310/710 Devices)	89
Programmable CRC	73
PTG	56
PWM	5/
PWM Generator 2	57
PWM Generator 3	58
PWM Generator 4	59
PWM Generator 5	59
PWM Generator 6	60
QEI1	61
Real-Time Clock and Calendar	02
Reference Clock	
SPI1, SPI2 and SPI3	64
System Control	78
Timers	52
	63
UAR13 and UAR14	64
ADxCHS0 (ADCx Input Channel 0 Select)	338
ADxCHS123 (ADCx Input	
Channel 1, 2, 3 Select)	337
ADxCON1 (ADCx Control 1)	331
ADxCON2 (ADCx Control 2)	333
ADXCON3 (ADCX Control 3)	335
ADxCSSH (ADCx Input Scan Select High)	330
ADxCSSL (ADCx Input Scan Select Low)	342
ALCFGRPT (Alarm Configuration)	388
ALRMVAL (Alarm Minutes and Seconds Value,	
ALRMPTR = 00)	393
ALRMVAL (Alarm Month and Day Value, $AL PMPTP = 10$)	204
ALKIVIFIK = IU)	391
ALRMPTR = 01)	392
ALTDTRx (PWMx Alternate Dead-Time)	246