

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm306t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-64 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

TABLE 4-64:OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND
PSV SPACE BOUNDARIES^(2,3,4)

0/11			Before		After		
0/0, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last Page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last Isw Page	DSRPAG = 0x300	1	PSV: First MSB Page
O, Read	[Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB Page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last Page	DSWPAG = 0x1FF	0	See Note 1
U, Read	r	DSRPAG = 0x001	1	PSV Page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First lsw Page	DSRPAG = 0x200	0	See Note 1
U, Read	[111]	DSRPAG = 0x300	1	PSV: First MSB Page	DSRPAG = 0x2FF	1	PSV: Last Isw Page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo Linear Addressing is not supported for large offsets.

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
—	COSC2	COSC1	COSC0	-	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾				
bit 15							bit 8				
R/W-0) R/W-0	R-0	U-0	R/W-0	U-0	R/W-0	R/W-0				
CLKLO	CK IOLOCK	LOCK	—	CF ⁽⁵⁾	—	LPOSCEN	OSWEN				
bit 7							bit 0				
Legend:		y = Value set	from Configur	ation bits on F	POR						
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value	e at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	iown				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	y)						
	111 = Fast R 110 = Fast R 101 = Low-P 100 = Secon 011 = Primar 010 = Primar	C Oscillator (F C Oscillator (F ower RC Oscill dary Oscillator y Oscillator (M y Oscillator (M	RC) with Divid RC) with Divid lator (LPRC) (SOSC) ⁽⁴⁾ S, HS, EC) wit S, HS, EC)	le-by-N le-by-16 th PLL							
	001 = Fast R 000 = Fast R	C Oscillator (F C Oscillator (F	RC) Divided b RC)	y N and PLL							
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	NOSC<2:0>: 111 = Fast R 110 = Fast R 101 = Low-P	New Oscillato C Oscillator (F C Oscillator (F ower BC Oscill	r Selection bits RC) with Divid RC) with Divid	s(2) le-by-N le-by-16							
	100 = Secon 011 = Primar 010 = Primar 001 = Fast R 000 = Fast R	dary Oscillator y Oscillator (M y Oscillator (M C Oscillator (F C Oscillator (F	(SOSC) ⁽⁴⁾ S, HS, EC) wit S, HS, EC) RC) Divided b RC)	th PLL y N and PLL							
bit 7	CLKLOCK: (Clock Lock Ena	ble bit								
	1 = If FCKSM configura 0 = Clock an	M0 = 1, then clo ations may be r d PLL selection	ock and PLL co modified ns are not lock	onfigurations a ced, configurations	re locked; if FCk tions may be mc	(SM0 = 0, then o	clock and PLL				
bit 6	IOLOCK: I/O	Lock Enable b	oit								
	1 = I/O lock is 0 = I/O lock is	1 = I/O lock is active 0 = I/O lock is not active									
Note 1:	Writes to this regis Manual", "Oscilla	ster require an t or " (DS70580	unlock sequen), available fro	ice. Refer to the to the the total termination of the microchem the microchem the microchem the microchem the microchem the microchem termination of the termination of termina	he <i>"dsPIC33/PIC</i> hip web site for o	C24 Family Refe	ərence				
2:	Direct clock switch This applies to clo mode as a transition	les between an ck switches in onal clock sour	y primary osci either directior ce between th	llator mode wi n. In these ins e two PLL mo	th PLL and FRC tances, the appli odes.	PLL mode are r ication must sw	not permitted. itch to FRC				
3:	This register reset	s only on a Pov	wer-on Reset ((POR).							
4:	Secondary Oscilla 44-pin devices.	tor (SOSC) sel	ection is valid	on 64-pin and	100-pin device	s, and defaults	to FRC/N on				
-	Orales (of a based of the										

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK3R<6:0>	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI3R<6:0>			
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	SCK3R<6:0	0>: Assign SPI3	Clock Input (SCK3) to the Co	orresponding l	RPn/RPIn Pin bi	ts
	(see Table	11-2 for input pin	selection nu	mbers)			
	1111111 =	Input tied to RP	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	6				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	SDI3R<6:0	>: Assign SPI3 E	ata Input (SI	DI3) to the Corre	esponding RP	n/RPIn Pin bits	
	(see lable	11-2 for input pin	selection nui	mbers)			
	•	Input tied to RP	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	3				

REGISTER 11-23: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS70362), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as eight independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 and Timer8 are the least significant word (Isw); Timer3, Timer5, Timer7 and Timer9 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON register control bits are ignored. Only T2CON, T4CON, T6CON and T8CON register control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Timer7 and Timer9 interrupt flags.

A block diagram for an example of a 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 - 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
 - 0 = PWMxH and PWMxL pins are mapped to their respective pins
- bit 0 OSYNC: Output Override Synchronization bit
 - 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- **Note 1:** These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-20: TRIGX: PWMX PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADCx module.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI)" (DS70005185), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXXGM3XX/6XX/7XX device family offers three SPI modules on a single device. These modules, which are designated as SPI1, SPI2 and SPI3, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 and SPI3. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1, SPI2 and SPI3 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 and SPI3 modules take advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of these modules, but results in a lower maximum speed. See **Section 33.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 7<15:8>: CANx Message Byte 7

bit 7-0 Byte 6<7:0>: CANx Message Byte 6

BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—			FILHIT<4:0>(1)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADRC	—	—	SAMC4 ⁽¹⁾	SAMC3 ⁽¹⁾	SAMC2 ⁽¹⁾	SAMC1 ⁽¹⁾	SAMC0 ⁽¹⁾	
bit 15	·						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADCS7(2	²⁾ ADCS6 ⁽²⁾	ADCS5 ⁽²⁾	ADCS4 ⁽²⁾	ADCS3 ⁽²⁾	ADCS2 ⁽²⁾	ADCS1 ⁽²⁾	ADCS0 ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	ADRC: ADCx	Conversion Cl	ock Source bit	t				
	1 = ADCx inte	ernal RC clock						
	0 = Clock der	ived from syste	m clock					
bit 14-13	Unimplemen	ted: Read as '0)'					
bit 12-8	SAMC<4:0>:	Auto-Sample T	ïme bits ⁽¹⁾					
	11111 = 31 T	ĀD						
	•							
	•							
	00001 = 1 TA	D						
	00000 = 0 TA	D						
bit 7-0	ADCS<7:0>:	ADCx Convers	ion Clock Sele	ect bits ⁽²⁾				
	11111111 =	TP • (ADCS<7:0)> + 1) = TP • 1	256 = Tad				
	•							
	•							
	00000010 = TP • (ADCS<7:0> + 1) = TP • 3 = TAD							
	00000001 =	TP • (ADCS<7:0)> + 1) = TP • :	2 = TAD				
	00000000 =	TP • (ADCS<7:0	J≥ + I) = IP •	I = IAD				
Note 1:	This bit is only use	d if SSRC<2:0>	> (AD1CON1<	7:5>) = 111 ar	nd SSRCG (AD	1CON1<4>) =	0.	
2:	This bit is not used	I if ADRC (AD1	CON3<15>) =	1.				

REGISTER 23-3: ADxCON3: AD	DCx CONTROL REGISTER 3
----------------------------	------------------------

CM4CON: OP AMP/COMPARATOR 4 CONTROL REGISTER (CONTINUED) REGISTER 26-3: EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits⁽²⁾ bit 7-6 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output. 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output. If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output. 00 = Trigger/event/interrupt generation is disabled Unimplemented: Read as '0' bit 5 CREF: Comparator Reference Select bit (VIN+ input)⁽¹⁾ bit 4 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to C4IN1+ pin bit 3-2 Unimplemented: Read as '0' CCH<1:0>: Comparator Channel Select bits⁽¹⁾ bit 1-0 11 = VIN- input of comparator connects to OA3/AN6 10 = VIN- input of comparator connects to OA2/AN0 01 = VIN- input of comparator connects to OA1/AN3 00 = VIN- input of comparator connects to C4IN1-Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

30.2 User ID Words

dsPIC33EPXXXGM3XX/6XX/7XX devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

The User ID Words register map is shown in Table 30-3.

TABLE 30-3: USER ID WORDS REGISTER MAP

File Name	Address	Bits<23:16>	Bits<15:0>
FUID0	0x800FF8		UID0
FUID1	0x800FFA	_	UID1
FUID2	0x800FFC	—	UID2
FUID3	0x800FFE		UID3

Legend: — = unimplemented, read as '1'.

30.3 On-Chip Voltage Regulator

All of the dsPIC33EPXXXGM3XX/6XX/7XX devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGM3XX/6XX/ 7XX family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 30-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 33-5, located in **Section 33.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 30-1: CONNECTIONS FOR THE

ON-CHIP VOLTAGE REGULATOR^(1,2,3)

30.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 33-21 of **Section 33.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

30.6 JTAG Interface

dsPIC33EPXXXGM3XX/6XX/7XX devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to the	"dsPIC33/PI	IC24	Family
	Reference Mar	nual", "Progra	ammiı	ng and
	Diagnostics"	(DS70608)	for	further
	information on	usage, confi	gurati	on and
	operation of the	e JTAG interfa	ace.	

30.7 In-Circuit Serial Programming

The dsPIC33EPXXXGM3XX/6XX/7XX devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

30.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or the REAL ICE[™] in-circuit emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB X IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

30.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGM3XX/6XX/7XX devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CodeGuard™ Security" (DS70634) for further information on usage, configuration and operation of CodeGuard Security.

AC CHA	RACTEF	RISTICS	Standard Ope (unless other Operating tem	rating C wise stat perature	onditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symb	Characteristic	Min. Typ. ⁽¹⁾		Max.	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10 32.4	 32.768	10 25 33.1	MHz MHz kHz	XT HS SOSC	
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	TA = +125°C	
		Tosc = 1/Fosc	7.14	—	DC	ns	TA = +85°C	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67	—	DC	ns	TA = +125°C	
			14.28		DC	ns	TA = +85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time		_	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2	—	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C	
			_	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 33-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 33-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾

АС СН	ARACTERIS	TICS		Standard Ope (unless other Operating tem	tandard Operating Conditions: 3.0V to 3.6V inless otherwise stated) perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			6V for Industrial C for Extended
Param No.	Symbol	Charae	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)
			Asynchronous	10		—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N		_	ns	N = Prescaler value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscilla Frequency F enabled by s (T1CON<1>	ator Input Range (oscillator setting TCS) bit)	DC	_	50	kHz	
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

Г

АС СН	ARACTERIS	STICS		Standard Ope (unless other Operating tem	unless otherwise stated) Derating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
TB10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)	
TB11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)	
TB15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	_	ns	N = Prescale value (1, 8, 64, 256)	
TB20	TCKEXTMRL	Delay from E Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns		

TABLE 33-23: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS . .

... ~

.

.

.

Note 1: These parameters are characterized, but are not tested in manufacturing.

AC CH	ARACTERIS	TICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				6 V for Industrial C for Extended
Param No.	Symbol	Chara	cteristic ⁽¹⁾	Min. Typ. Max. Units Conditions			Conditions	
TC10	ТтхН	TxCK High Time	Synchronous	Тсү + 20			ns	Must also meet Parameter TC15
TC11	ΤτxL	TxCK Low Time	Synchronous	Tcy + 20		_	ns	Must also meet Parameter TC15
TC15	ΤτχΡ	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40		_	ns	N = Prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from I Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

FIGURE 33-19: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 33-39:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

			Standard Op	perating	Conditi	ons: 3.0	W to 3.6V		
		TICS	(unless othe	erwise st	tated)				
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
	1	1			-40°	$C \le IA \le$	+125°C for Extended		
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCKx Input Frequency	—	—	11	MHz	(Note 3)		
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	—	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 33-46:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHA		rics	Standard Op (unless othe	perating erwise st	Conditi tated)	ons: 3.0	V to 3.6V
			Operating ter	mperatur	e -40° -40°	$C \le TA \le C \le $	+85°C for Industrial
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	25	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—			ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	_		ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	-	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 TCY + 40	_	—	ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

АС СНА	RACTERIS	TICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$: 3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC A	ccuracy (10-Bit N	lode)		
AD20b	Nr	Resolution	10) Data B	its	bits	
AD21b	INL	Integral Nonlinearity	-0.625		0.625	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (Note 2)}$
			-1.5		1.5	LSb	+85°C < TA \leq +125°C (Note 2)
AD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$
			-0.25	_	0.25	LSb	+85°C < TA ≤ +125°C (Note 2)
AD23b	Gerr	Gain Error	-2.5	—	2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-2.5	_	2.5	LSb	+85°C < TA ≤ +125°C (Note 2)
AD24b	EOFF	Offset Error	-1.25	—	1.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-1.25		1.25	LSb	+85°C < TA ≤ +125°C (Note 2)
AD25b		Monotonicity	_	—		—	Guaranteed
		Dynamic P	erforman	ce (10-E	Bit Mode)	
AD30b	THD	Total Harmonic Distortion ⁽³⁾		64		dB	
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	—	57	—	dB	
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	_	72	_	dB	
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	—	550		kHz	
AD34b	ENOB	Effective Number of Bits ⁽³⁾	—	9.4	_	bits	

TABLE 33-58: ADCx MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, may have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

AUXCONx (PWMx Auxiliary Control)254
CHOP (PWMx Chop Clock Generator)241
CLKDIV (Clock Divisor)148
CM4CON (Op Amp/Comparator 4 Control)
CMSTAT (Op Amp/Comparator Status)
CMxCON (Op Amp/Comparator x
Control, x = 1, 2, 3 or 5)
CMxFLTR (Comparator x Filter Control)
CMxMSKCON (Comparator x Mask
Gating Control)
CMxMSKSRC (Comparator x Mask Source
Select Control)
CORCON (Core Control)
CRCCON1 (CRC Control 1) 407
CRCCON2 (CRC Control 2) 408
CRCXORH (CRC XOR Polynomial High)409
CRCXORL (CRC XOR Polynomial Low) 409
CTMUCON1 (CTMU Control Register 1)
CTMUCON2 (CTMU Control Register 2)
CTMUICON (CTMU Current Control)
CVR1CON (Comparator Voltage
Reference Control 1)
CVR2CON (Comparator Voltage
Reference Control 2)
CxBUFPNT1 (CANx Filters 0-3
Buffer Pointer 1)
CxBUFPNT2 (CANx Filters 4-7
Buffer Pointer 2)
CxBUFPNT3 (CANx Filters 8-11
Buffer Pointer 3)
CxBUFPNT4 (CANx Filters 12-15
Buffer Pointer 4)
CxCFG1 (CANx Baud Rate Configuration 1)
CxCFG2 (CANx Baud Rate Configuration 2)
CxCTRL1 (CANx Control 1)
CxCTRL2 (CANx Control 2)
CxEC (CANx Transmit/Receive Error Count)
CxFCTRL (CANx FIFO Control)
CxFEN1 (CANx Acceptance Filter Enable 1)
CxFIFO (CANx FIFO Status)
CxFMSKSEL1 (CANx Filters 7-0
Mask Selection 1)
CxFMSKSEL2 (CANx Filters 15-8
Mask Selection 2)
CxINTE (CANx Interrupt Enable)
CxINTF (CANx Interrupt Flag)
CxRXFnEID (CANx Acceptance Filter n
Extended Identifier)
CxRXFnSID (CANx Acceptance Filter n
Standard Identifier) 309
CxRXFUL1 (CANx Receive Buffer Full 1)
CxRXFUL2 (CANx Receive Buffer Full 2)
CxRXMnEID (CANx Acceptance Filter Mask n
Extended Identifier)
CxRXMnSID (CANx Acceptance Filter Mask n
Standard Identifier) 312
CxRXOVF1 (CANx Receive Buffer Overflow 1) 314
CxRXOVF2 (CANx Receive Buffer Overflow 2) 314
CxTRmnCON (CANx TX/RX Buffer mn Control) 315
CxV/EC (CANy Interrupt Code) 200
DCICON1 (DCI Control 1)
DCICON1 (DCI Control 1)
DCICON1 (DCI Control 1)
CAVEC (CANA Interrupt Code) 239 DCICON1 (DCI Control 1) 344 DCICON2 (DCI Control 2) 345 DCICON3 (DCI Control 3) 346 DCISTAT (DCI Status) 347

DEVREV (Device Revision)	415
DMALCA (DMA Last Channel Active Status)	140
DMAPPS (DMA Ping-Pong Status)	141
DMAPWC (DMA Peripheral Write	
Collision Status)	138
DMARQC (DMA Request Collision Status)	139
DMAxCNT (DMA Channel x Transfer Count)	136
DMAxCON (DMA Channel x Control)	132
DMAxPAD (DMA Channel x	
Peripheral Address)	136
DMAxREQ (DMA Channel x IRQ Select)	133
DMAxSTAH (DMA Channel x	
Start Address A, High)	134
DMAxSTAL (DMA Channel x	
Start Address A, Low)	134
DMAxSTBH (DMA Channel x	
Start Address B, High)	135
DMAxSTBL (DMA Channel x	
Start Address B, Low)	135
DSADRH (DMA Most Recent RAM	
High Address)	137
DSADRL (DMA Most Recent RAM	
Low Address).	137
DTRx (PWMx Dead-Time)	246
FCI CONx (PWMx Fault Current-Limit Control)	250
I2CxCON (I2Cx Control)	283
I2CxMSK (I2Cx Slave Mode Address Mask)	287
I2CVSTAT (I2CV Status)	285
ICxCON1 (Input Capture x Control 1)	200
ICxCON2 (Input Capture x Control 2)	220
INDXxCNTH (Index Counter x High Word)	267
INDXxCNTL (Index Counter x Low Word)	207
INDXXCHTE (Index Counter x Hold)	201
INTCON1 (Interrupt Control 1)	123
INTCON2 (Interrupt Control 2)	125
INTCON2 (Interrupt Control 2)	120
INTCONS (Interrupt Control 4)	120
INTERC (Interrupt Control and Status)	120
INTYELDE (Interrupt Control and Status)	127
INTXALDA (Interval Timerx Hold Low Word)	272
INTXALDL (Interval Timerx Ligh Word)	272
	271
INTXTMRL (Interval Timerx Low Word)	2/1
IOCONX (PWWX I/O Control)	248
LEBCOIX (Leading-Edge Blanking Control X)	050
LEBDLYX (Leading-Edge Blanking Delay X)	252
	252 253
	252 253 241
NVMADR (Nonvolatile Memory Lower Address)	252 253 241 107
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory	252 253 241 107
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address)	252 253 241 107
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control)	252 253 241 107 107 105
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key)	252 253 241 107 107 105 108
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory	252 253 241 107 107 105 108
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address)	252 253 241 107 107 105 108
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory	252 253 241 107 107 105 108 108
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address)	252 253 241 107 107 105 108 108
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1)	252 253 241 107 105 108 108 108 109 224
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2)	252 253 241 107 105 108 108 108 109 224 226
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2)	252 253 241 107 105 108 108 109 224 226 146
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Lower Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning)	252 253 241 107 105 108 108 109 224 226 146 151
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Lower Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning). PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 108 109 224 226 146 151 403
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 108 109 224 226 146 151 403 244
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 108 108 109 224 226 146 151 403 244 245
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control)	252 253 241 107 105 108 108 109 224 226 146 151 403 244 245 150
NVMADR (Nonvolatile Memory Lower Address) NVMADRU (Nonvolatile Memory Upper Address) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) NVMSRCADRH (Nonvolatile Data Memory Upper Address) NVMSRCADRL (Nonvolatile Data Memory Lower Address) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PADCFG1 (Pad Configuration Control) PHASEx (PWMx Primary Phase-Shift) PMADDR (Parallel Master Port Address)	252 253 241 107 105 108 109 224 226 146 151 403 244 245 150 400

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support