

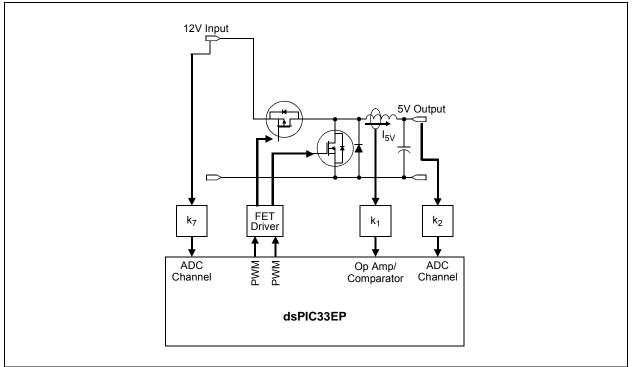
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

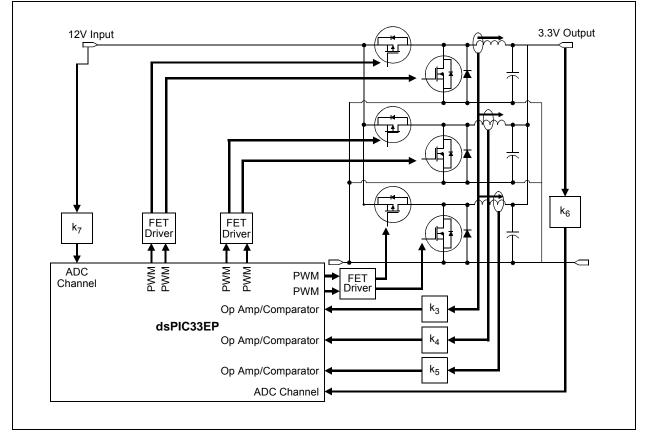
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2000	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm310-e-pf


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-10: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC2	0C46								PDC2	<15:0>						•	•	0000
PHASE2	0C48								PHASE	2<15:0>								0000
DTR2	0C4A	_	_							DTR2	<13:0>							0000
ALTDTR2	0C4C	_	_							ALTDTR	2<13:0>							0000
SDC2	0C4E		•						SDC2	<15:0>								0000
SPHASE2	0C50								SPHAS	=2<15:0>								0000
TRIG2	0C52								TRGCM	IP<15:0>								0000
TRGCON2	0C54	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP2	0C78								PWMCA	P2<15:0>						•	•	0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—	—	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	_	_	_		-		•		LEB<1	1:0>	-			•	•	0000
AUXCON2	0C5E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	—	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON3	0C64	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC3	0C66								PDC3	<15:0>								0000
PHASE3	0C68								PHASE	3<15:0>								0000
DTR3	0C6A	_	_							DTR3	<13:0>							0000
ALTDTR3	0C6C	_	-							ALTDTR	3<13:0>							0000
SDC3	0C6E								SDC3	<15:0>								0000
SPHASE3	0C70								SPHASE	E3<15:0>								0000
TRIG3	0C72								TRGCM	IP<15:0>								0000
TRGCON3	0C74	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP3	0C78								PWMCA	P3<15:0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	-	_	_						LEB<	11:0>						0000
AUXCON3	0C7E	_	-	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES ⁽¹⁾ (CONTINUED	TABLE 4-28 :	CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FO)R dsPIC33EPXXXGM60X/7XX DEVICES ⁽¹⁾ (CONTINUED)
--	---------------------	---	---

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx
C2RXF11EID	056E								E	ID<15:0>								xxxx
C2RXF12SID	0570	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C2RXF12EID	0572								E	ID<15:0>								xxxx
C2RXF13SID	0574	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	—	EID17	EID16	xxxx
C2RXF13EID	0576								E	ID<15:0>								xxxx
C2RXF14SID	0578	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	—	EID17	EID16	xxxx
C2RXF14EID	057A								E	ID<15:0>								xxxx
C2RXF15SID	057C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	MIDE	_	EID17	EID16	xxxx
C2RXF15EID	057E								E	ID<15:0>								xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

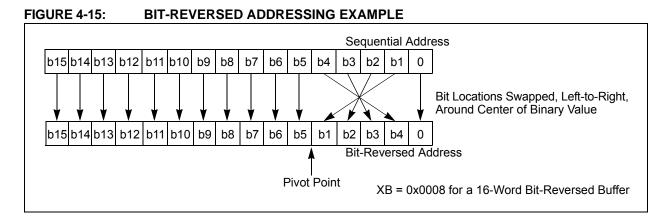

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-29: PROGRAMMABLE CRC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—	0000
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644								X<15:1>								—	0000
CRCXORH	0646								X<31	:16>								0000
CRCDATL	0648							CRC E	Data Input Lo	w Word Re	egister							0000
CRCDATH	064A							CRC D	ata Input Hi	gh Word Re	egister							0000
CRCWDATL	064C							CRC	Result Low	Word Regi	ster							0000
CRCWDATH	064E							CRC	Result High	Word Reg	ister							0000

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

dsPIC33EPXXXGM3XX/6XX/7XX

TABLE 4-67: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- · CPU interrupt after half or full block transfer complete
- · Byte or word transfers
- Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM Start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	_	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	—
TMR3 – Timer3	00001000	—	—
TMR4 – Timer4	00011011	—	_
TMR5 – Timer5	00011100	—	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
SPI3 Transfer Done	01011011	0x02A8(SPI3BUF)	0x02A8(SPI3BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)
UART3RX – UART3 Receiver	01010010	0X0256(U3RXREG)	
UART3TX – UART3 Transmitter	01010011	_	0X0254(U3TXREG)
UART4RX – UART4 Receiver	01011000	0X02B6(U4RXREG)	
UART4TX – UART4 Transmitter	01011001		0X02B4(U4TXREG)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER 8-12:	DMARQC: DMA REQUEST COLLISION STATUS REGISTER
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	_	—			
bit 15	•	•	•			•	bit 8			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
—	—	—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0			
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-4	Unimplemen	ted: Read as '	0'							
bit 3	RQCOL3: Ch	annel 3 Transf	er Request Co	ollision Flag bit						
		RCE and interr		uest collision a	are detected					
	0 = No reque	st collision is d	etected							
bit 2		annel 2 Transf		0						
		RCE and interr	• •	uest collision a	are detected					
		st collision is d								
bit 1		annel 1 Transf	-	-						
		RCE and interr st collision is d	•	uest collision a	are detected					
bit 0	RQCOL0: Ch	annel 0 Transf	er Request Co	ollision Flag bit						
	1 = User FOF	RCE and interr	unt-hased red	uest collision a	are detected					

- 1 = User FORCE and interrupt-based request collision are detected
- 0 = No request collision is detected

REGISTER 10-4:	PMD4: PERIPHERAL	MODULE DISABLE	CONTROL REGISTER 4
----------------	-------------------------	----------------	--------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0			
—	—	U4MD	—	REFOMD	CTMUMD	—	_			
bit 7							bit 0			
Logondi										
Legend: R = Readal	bla bit	W = Writable	hit	LI – Unimplon	contod hit rook	1 00 '0'				
		'1' = Bit is set		0 – Onimpien	nented bit, read	x = Bit is unknown				
-n = Value a	alpur				areu		IOWII			
bit 15-6	Unimplemen	ted: Read as 'd)'							
bit 5	-	4 Module Disa								
	1 = UART4 m	odule is disable	ed							
	0 = UART4 m	odule is enable	ed							
bit 4	Unimplemen	ted: Read as 'd)'							
bit 3	REFOMD: Re	eference Clock	Module Disabl	le bit						
	1 = Reference	e clock module	is disabled							
	0 = Reference	e clock module	is enabled							
bit 2	CTMUMD: C	TMU Module Di	isable bit							
		odule is disable								
	0 = CTMU mo	odule is enable	d							
11110			- 1							

bit 1-0 Unimplemented: Read as '0'

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

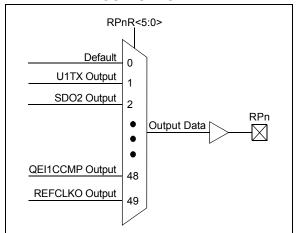
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	SPI3MD
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	PWM6MD:PWM1MD: PWMx (x = 1-6) Module Disable bit
	1 = PWMx module is disabled
	0 = PWMx module is enabled
bit 7-1	Unimplemented: Read as '0'
bit 0	SPI3MD: SPI3 Module Disable bit
	1 = SPI3 module is disabled
	0 = SPI3 module is enabled

© 2013-2014 Microchip Technology Inc.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
Input Capture 4	IC4	RPINR8	IC4R<6:0>
Input Capture 5	IC5	RPINR9	IC5R<6:0>
Input Capture 6	IC6	RPINR9	IC6R<6:0>
Input Capture 7	IC7	RPINR10	IC7R<6:0>
Input Capture 8	IC8	RPINR10	IC8R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index	INDX1	RPINR 15	INDX1R<6:0>
QEI1 Home	HOME1	RPINR15	HOM1R<6:0>
QEI2 Phase A	QEA2	RPINR16	QEA2R<6:0>
QEI2 Phase B	QEB2	RPINR16	QEB2R<6:0>
QEI2 Index	INDX2	RPINR17	INDX2R<6:0>
QEI2 Home	HOME2	RPINR17	HOM2R<6:0>
UART1 Receive	U1RX	RPINR18	U1RXR<6:0>
UART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
DCI Data Input	CSDI	RPINR24	CSDIR>6:0>
DCI Clock Input	CSCK	RPINR24	CSCKR<6:0>
DCI Frame Synchronization Input	COFS	RPINR25	COFSR<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
CAN2 Receive ⁽²⁾	C2RX	RPINR26	C2RXR<6:0>
UART3 Receive	U3RX	RPINR27	U3RXR<6:0>
UART3 Clear-to-Send	U3CTS	RPINR27	U3CTSR<6:0>
UART4 Receive	U4RX	RPINR28	U4RXR<6:0>
UART4 Clear-to-Send	U4CTS	RPINR28	U4CTSR<6:0>
SPI3 Data Input	SDI3	RPINR29	SDI3R<6:0>
SPI3 Clock Input	SCK3	RPINR29	SCK3R<6:0>
SPI3 Slave Select	SS3	RPINR 30	SS3R<6:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.


2: This input is available on dsPIC33EPXXXGM6XX/7XX devices only.

11.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-30 through Register 11-42). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADCx to convert the digital output logic level or to toggle a digital output on a comparator or ADCx input provided there is no external analog input, such as for a built-in self-test.

- f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
- g) The TRIS registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRIS register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRIS bit must be set to input for pins with only remappable input function(s) assigned.
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin is disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRIS register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0		_		_
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹⁾	TRGSTRT5 ⁽¹
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-12	1111 = Trigg 1110 = Trigg 1101 = Trigg 1001 = Trigg 1010 = Trigg 1001 = Trigg 1000 = Trigg 0111 = Trigg 0110 = Trigg 0101 = Trigg 0101 = Trigg 0011 = Trigg 0010 = Trigg 0001 = Trigg 0001 = Trigg 0000 = Trigg	>: Trigger # Ou er output for ev er output for ev	ery 16th trigge ery 15th trigge ery 15th trigge ery 13th trigge ery 12th trigge ery 12th trigge ery 10th trigger ery 9th trigger ery 8th trigger ery 6th trigger ery 5th trigger ery 5th trigger ery 3rd trigger ery 2nd trigger ery trigger eve	r event r event r event r event r event r event event event event event event event event event			
bit 11-6 bit 5-0	TRGSTRT<5 111111 = Wa	ait 63 PWM cyc	stscaler Start E les before gen es before gene	rating the first t	its ⁽¹⁾ trigger event af rigger event afte gger event afte	er the module is	s enabled

REGISTER 16-18: TRGCONx: PWMx TRIGGER CONTROL REGISTER

REGISTER 16-23: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER x

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	—		LEB	<11:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LEE	<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

REGISTER 21-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	pit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
R = Readable -n = Value at		W = Writable '1' = Bit is set		0 = Unimpler 0' = Bit is cle	,	t as '0' x = Bit is unkr	nown
					,		iown
-n = Value at	POR		t	ʻ0' = Bit is cle	,		iown
-n = Value at	POR F3BP<3:0> :	'1' = Bit is set	t k for Filter 3 b	ʻ0' = Bit is cle	,		nown
-n = Value at	POR F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas	k for Filter 3 b	ʻ0' = Bit is cle its ffer	,		iown
-n = Value at	POR F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	k for Filter 3 b	ʻ0' = Bit is cle its ffer	,		iown
	POR F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	k for Filter 3 b	ʻ0' = Bit is cle its ffer	,		nown
-n = Value at	POR F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	k for Filter 3 b	ʻ0' = Bit is cle its ffer	,		nown
-n = Value at	POR F3BP<3:0>: 1111 = Filter 1110 = Filter 0001 = Filter	'1' = Bit is set RX Buffer Mas hits received in	k for Filter 3 b n RX FIFO bu n RX Buffer 14 n RX Buffer 1	ʻ0' = Bit is cle its ffer	,		nown
-n = Value at	POR F3BP<3:0>: 1111 = Filter 1110 = Filter 0001 = Filter 0000 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0	ʻ0' = Bit is cle its iffer	,	x = Bit is unkr	iown
-n = Value at bit 15-12	POR F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in RX Buffer Mas	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0 k for Filter 2 b	ʻ0' = Bit is cle its ffer its (same value	ared	x = Bit is unkr	iown

	REGISTER 24-2:	DCICON2: DCI CONTROL REGISTER 2
--	----------------	---------------------------------

r-0	r-0	r-0	r-0	R/W-0	R/W-0	r-0	R/W-0			
r	r	r	r	BLEN1	BLEN0	r	COFSG3			
bit 15							bit 8			
D 4 4 4 0	DMU O	D 444 0		D44 0	DAALO	DAVA	D 444 0			
R/W-0	R/W-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0			
COFSG2 bit 7	COFSG1	COFSG0	r	WS3	WS2	WS1	WS0			
Legend:		r = Reserved b	it							
R = Readab	ole bit	W = Writable b	it	U = Unimpler	nented bit, rea	ad as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-12	Reserved: R	and as '0'								
bit 11-10			ontrol hito							
		Buffer Length Co								
	11 = Four data words will be buffered between interrupts									
	 10 = Three data words will be buffered between interrupts 01 = Two data words will be buffered between interrupts 									
		a word will be bu		•						
bit 9	Reserved: R									
bit 8-5	COFSG<3:0:	>: Frame Sync G	enerator Co	ontrol bits						
		frame has 16 wo								
	•									
	•									
	• 0010 - Dete frame has 2 words									
	0010 = Data frame has 3 words 0001 = Data frame has 2 words									
		frame has 1 wor								
bit 4	Reserved: R	ead as '0'								
bit 4 bit 3-0		ead as '0' CI Data Word Siz	e bits							
	WS<3:0>: D(
	WS<3:0>: D(CI Data Word Siz								
	WS<3:0>: D(CI Data Word Siz								
	WS<3:0>: D(1111 = Data • •	CI Data Word Siz word size is 16 t	bits							
	WS<3:0>: D0 1111 = Data • • • 0100 = Data	CI Data Word Siz word size is 16 t word size is 5 bi	bits							
	WS<3:0>: D(1111 = Data • • • • • • • • • • • • • • • • • •	CI Data Word Siz word size is 16 t	bits ts ts	nexpected resul	ts may occur.					

0000 = Invalid Selection. Do not use. Unexpected results may occur.

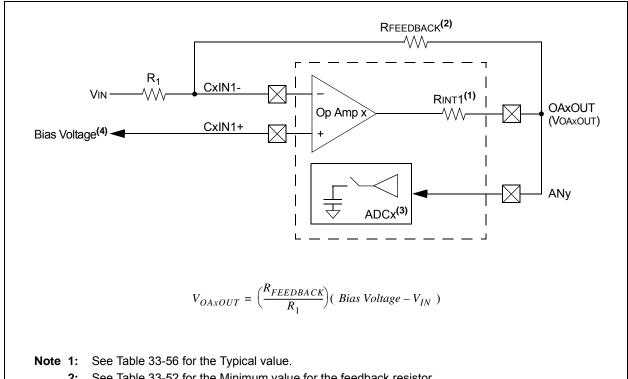
26.1.2 **OP AMP CONFIGURATION B**

Figure 26-6 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADCx input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 33-52 in Section 33.0 "Electrical Characteristics" for the typical value of RINT1. Table 33-57 and Table 33-58 in Section 33.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADCx module in this configuration.

Figure 26-6 also defines the equation to be used to calculate the expected voltage at point, VOAxOUT. This is the typical inverting amplifier equation.

OP AMP CONFIGURATION B

FIGURE 26-6:


26.2 **Op Amp/Comparator Resources**

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

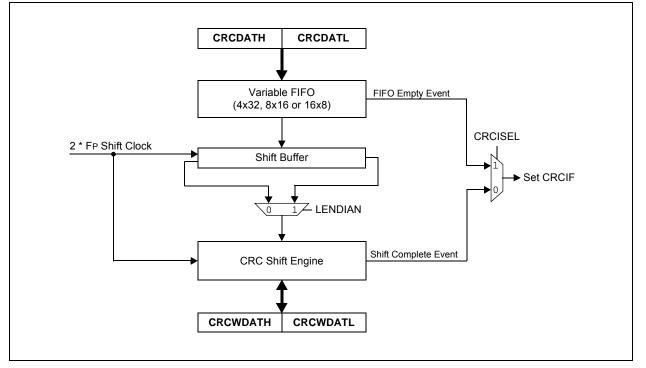
- "Op Amp/Comparator" (DS70000357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

- See Table 33-52 for the Minimum value for the feedback resistor. 2:
- See Table 33-59 and Table 33-60 for the Minimum Sample Time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

© 2013-2014 Microchip Technology Inc.

29.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS70346), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The programmable CRC generator offers the following features:

- User-Programmable (up to 32nd order) polynomial CRC equation
- Interrupt Output
- Data FIFO

The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

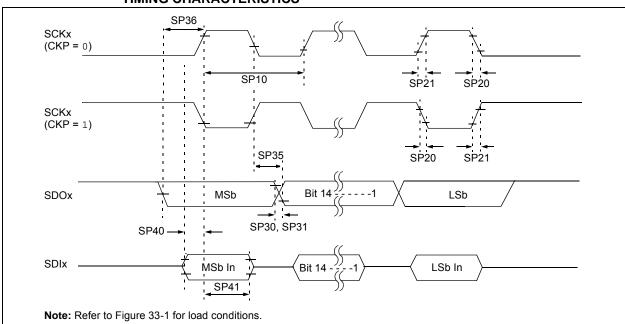

A simplified block diagram of the CRC generator is shown in Figure 29-1. A simple version of the CRC shift engine is shown in Figure 29-2.

FIGURE 29-1: CRC BLOCK DIAGRAM

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
				Compare Wb with Wn, branch if ≠	-1	. /	

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 33-17: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 33-34:SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCKx Frequency	_	_	9	MHz	(Note 3)
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	_	—		ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

- **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

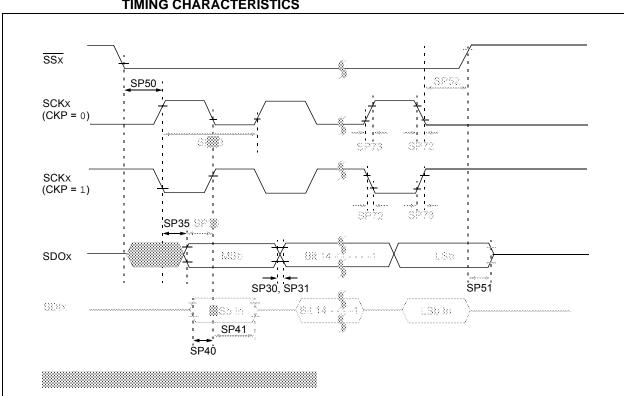


FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

АС СНА	ARACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol TLO:SCL	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	Max.	Units	Conditions	
IM10		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)		μs		
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
		-	400 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS		
IM20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode		300	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 CB	300	ns		
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		300	ns	-	
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns		
			400 kHz mode	100		ns		
			1 MHz mode ⁽²⁾	40		ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μS		
			400 kHz mode	0	0.9	μS	-	
			1 MHz mode ⁽²⁾	0.2	_	μS		
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	Only relevant for	
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	After this period, the first clock pulse is generated	
			400 kHz mode	Tcy/2 (BRG +2)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs		
IM33	Τςυ:ςτο	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS		
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS		
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode		3500	ns		
			400 kHz mode		1000	ns		
			1 MHz mode ⁽²⁾		400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be	
			400 kHz mode	1.3		μ ο μS	free before a new	
			1 MHz mode ⁽²⁾	0.5		μ0 μS	transmission can start	
IM50	Св	Bus Capacitive L			400	μ5 pF		
IM51	TPGD	Pulse Gobbler De		65	390	ns	(Note 3)	

TABLE 33-48: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to the "*dsPIC33/PIC24 Family Reference* Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70000195). Please see the Microchip web site for the latest "*dsPIC33E/PIC24E Family Reference Manual*" sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized, but not tested in manufacturing.