

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	-
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm310-h-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGM3XX/6XX/7XX

Pin Diagrams (Continued)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	-	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	tput Comp	pare 1 Sec	ondary Regis	ster						xxxx
OC1R	0906								Output	Compare	1 Register							xxxx
OC1TMR	0908		Output Compare 1 Timer Value Register								xxxx							
OC2CON1	090A	-	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E	Output Compare 2 Secondary Register x								xxxx								
OC2R	0910								Output	Compare 2	2 Register							xxxx
OC2TMR	0912							Out	tput Comp	are 2 Time	r Value Regi	ster						xxxx
OC3CON1	0914	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							Ou	tput Comp	oare 3 Sec	ondary Regis	ster						xxxx
OC3R	091A								Output	Compare	3 Register							xxxx
OC3TMR	091C		-			_		Out	put Comp	are 3 Time	r Value Regi	ster	-					xxxx
OC4CON1	091E	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Comp	oare 4 Sec	ondary Regis	ster						xxxx
OC4R	0924								Output	Compare 4	4 Register							xxxx
OC4TMR	0926		-			_		Out	put Comp	are 4 Time	r Value Regi	ster	-					xxxx
OC5CON1	0928	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	092C							Ou	tput Comp	oare 5 Sec	ondary Regis	ster						xxxx
OC5R	092E								Output	Compare	5 Register							xxxx
OC5TMR	0930		-			_		Out	put Comp	are 5 Time	r Value Regi	ster	-					xxxx
OC6CON1	0932	—		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	0936							Ou	tput Comp	oare 6 Sec	ondary Regis	ster						xxxx
OC6R	0938								Output	Compare	6 Register							xxxx
OC6TMR	093A							Out	but Comp	are 6 Time	r Value Regi	ster						XXXX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EPXXXGM3XX/6XX/7XX Product Family" section for the page sizes of each device.

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

For more information on erasing and programming Flash memory, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Flash Programming"** (DS70609).

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time), in Table 33-13.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. Programmers can also program a row of data (64 instruction words/ 192 bytes) at a time using the row programming feature present in these devices. For row programming, the source data is fetched directly from the data memory (RAM) on these devices. Two new registers have been provided to point to the RAM location where the source data resides. The page that has the row to be programmed must first be erased before the programming operation.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Flash Programming"** (DS70609) for details and code examples on programming using RTSP.

5.4 Control Registers

Six SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU, NVMSRCADRL and NVMSRCADRH.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

The NVMSRCADRH and NVMSRCADRL registers are used to hold the source address of the data in the data memory that needs to be written to Flash memory.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

				-	-		
R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	R/W-0	R/W-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	—	—	RPDF	URERR ⁽⁶⁾
bit 15	·			•			bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)
bit 7							bit 0
Legend:		SO = Settab	le Only bit				
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ired	x = Bit is unkn	own
bit 15	WR: NVM W	rite Control bit	(1)				
	1 = Initiates	a Flash mem	ory program o	r erase operati	on; the operation	on is self-timed	and the bit is
		by hardware of	nce the operati	on is complete			
bit 11		Write Enchle	ation is comple				
DIL 14	1 - Enables		Dir Verase operati	one			
	0 = Inhibits F	lash program	erase operatio	ins			
bit 13	WRERR: NV	M Write Seque	ence Error Flag	g bit ⁽¹⁾			
	1 = An impro	per program o	r erase sequen	ce attempt, or te	ermination has o	ccurred (bit is se	et automatically
	on any se	et attempt of th	e WR bit)				
	0 = The prog	gram or erase	operation com	oleted normally			
bit 12	NVMSIDL: N	VM Stop in Idl	e Control bit ⁽²⁾				
	1 = Flash vo 0 = Flash vo	Itage regulator	goes into Star	ndby mode durii Ia Idle mode	ng Idle mode		
bit 11-10	Unimplemen	ted: Read as	'0'				
hit 9	RPDF: Bus M	Astered Row	° Programming	Data Format Co	ontrol bit		
bit o	1 = Row data	a to be stored	in RAM in com	pressed format			
	0 = Row data	a to be stored	in RAM in unco	ompressed form	nat		
bit 8	URERR: Bus	Mastered Ro	w Programming	g Data Underru	n Error Flag bit ⁽	6)	
	1 = Indicates	s that a bus n	nastered row p	programming op	peration has be	en termination	due to a data
	underrur	n error		1			
1.1.7.4		s no data unde	rrun error is de	etected			
dit 7-4	Unimplemen	ited: Read as	0				
Note 1:	These bits can c	only be reset o	n POR.				
2:	If this bit is set, t	here will be m	inimal power sa	avings (IIDLE), a	ind upon exiting	Idle mode, the	re is a delay
•	(IVREG) before I	-lash memory	becomes oper	ational.			
3:	All other combin	ations of NVM	UP<3:0> are u	inimplemented.			
4:	Execution of the	PWRSAV INSTR	lotion is ignore	a while any of t	ne ivvivi operat	ions are in prog	ress.

- 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.
- 6: When URERR is set, the bus mastered row programming operation will terminate with the WRERR bit still set.

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	R IOPUWR	—	—	VREGSF	—	CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimplei	mented bit, reac	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	Iown
bit 15 bit 14	TRAPR : Trap 1 = A Trap Co 0 = A Trap Co IOPUWR : Ille 1 = An illega Address	Reset Flag bit onflict Reset ha onflict Reset ha gal Opcode or l opcode detec Pointer caused	s occurred s not occurre Uninitialized ¹ ction, an illeg a Reset	d W Access Res gal address m	et Flag bit ode or Uninitial	ized W registe	er used as an
hit 12 12		topcode of Offi	nilializeu vv r	Register Reset	has not occurre	a	
bit 11		sh Voltago Por	J Julator Stand	by During Sloo	n hit		
DILTI	1 = Flash Vol 0 = Flash Vol	Itage regulator	is active durir goes into Sta	ng Sleep ndby mode du	ring Sleep		
bit 10	Unimplemen	ted: Read as '	o'				
bit 9	CM: Configur	ation Mismatch	Flag bit				
	1 = A Configu 0 = A Configu	uration Mismato	h Reset has h Reset has	occurred. NOT occurred			
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit			
	1 = Voltage r 0 = Voltage r	egulator is active egulator goes i	ve during Slee nto Standby r	ep mode during SI	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
	1 = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	set has occuri set has not oc	red curred			
bit 6	SWR: Softwa	re RESET (Insti	ruction) Flag	bit			
	1 = A reset 0 = A reset	instruction has instruction has	been execute not been exe	ed ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is ei 0 = WDT is di	nabled isabled					
bit 4	WDTO: Watc	hdog Timer Tin	ne-out Flag bi	t			
	1 = WDT time 0 = WDT time	e-out has occur e-out has not oc	red ccurred				
Note 1:	All of the Reset sta	atus bits can be	set or cleare	d in software. S	Setting one of th	ese bits in softw	ware does not
2.	If the FWDTEN Co	onfiguration bit i	is '1' (unprog	rammed) the V	WDT is always e	nabled regard	lless of the

RCON: RESET CONTROL REGISTER⁽¹⁾ **REGISTER 6-1:**

e сy SWDTEN bit setting.

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports" (DS70000598) which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

NOTES:

REGISTER 17-4: POSxCNTH: POSITION COUNTER x HIGH WORD REGISTER

DIL 15							DIL 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	IT<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 POSCNT<31:16>: High Word Used to Form 32-Bit Position Counter x Register (POSxCNT) bits

REGISTER 17-5: POSxCNTL: POSITION COUNTER x LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCI	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	pit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **POSCNT<15:0>:** Low Word Used to Form 32-Bit Position Counter x Register (POSxCNT) bits

REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INDXHLD<15:0>: Holding Register for Reading and Writing INDXxCNT bits

REGISTER 17-11: QEIXICH: QEIX INITIALIZATION/CAPTURE HIGH WORD REGISTER

Legend:							
bit 7							bit 0
			QEIIC	<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			QEIIC	<31:24>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 QEIIC<31:16>: High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: QEIx INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIIC	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
L							

bit 15-0 QEIIC<15:0>: Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

19.1 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		HC = Hardwa	re Clearable bi	t			
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, reac	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	12CEN: 12Cx	Enable bit					
	1 = Enables t	he I2Cx modu	e and configur	es the SDAx a	and SCLx pins a	is serial port pir	าร
	0 = Disables 1	the I2Cx modu	le; all I [∠] C™ pir	ns are controlle	ed by port funct	ions	
bit 14	Unimplemen	ted: Read as	0'				
bit 13	I2CSIDL: 12C	x Stop in Idle I	Node bit				
	1 = Discontinues 0 = Continues	ues module oper: s module oper:	eration when c	device enters a	an Idle mode		
hit 12	SCI REL: SC	l x Release Co	ontrol bit (when	operating as	I ² C™ slave)		
Sit 12	1 = Releases	SCI x clock					
	0 = Holds SC	Lx clock low (c	clock stretch)				
	If STREN = 1	<u>:</u>					
	Bit is R/W (i.e	., software car	write '0' to init	iate stretch an	nd write '1' to rel	ease clock). Ha	ardware clears
	at the beginn address byte	reception Har	lave data byte dware clears a	transmission.	. Hardware clea	ars at the end of byte reception	of every slave
	If STREN = 0	:					
	Bit is R/S (i.e.	<u>,</u> software can	only write '1' to	o release clocl	k). Hardware cle	ears at the begi	nning of every
	slave data by	te transmissior	n. Hardware cle	ears at the end	d of every slave	address byte r	eception.
bit 11	IPMIEN: Intel	ligent Peripher	al Managemer	nt Interface (IF	MI) Enable bit ⁽¹)	
	1 = IPMI mod	e is enabled; a	all addresses a	re Acknowled	ged		
h# 10			- h:4				
DIE TU		Slave Address	s Dil				
	1 = 12CXADD 0 = 12CXADD	is a 7-bit slave	e address				
bit 9	DISSLW: Disa	able Slew Rate	e Control bit				
	1 = Slew rate	control is disa	bled				
	0 = Slew rate	control is enal	bled				
bit 8	SMEN: SMBL	us Input Levels	bit				
	1 = Enables I	O pin thresho	lds compliant v	vith the SMBu	s specification		
	0 = Disables \$	SMBus input t	hresholds				
dit 7	GCEN: Gene	ral Call Enable	bit (when ope	rating as I ² C s	slave)		in an ability of C
	⊥ = Enables I	interrupt when	a general call	address is rec	eived in the I2C	XKSK (module	is enabled for
	0 = General (, call address is	disabled				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 21-1: CANX MODULE BLOCK DIAGRAM

21.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- bit 1-0 PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 10 = Single level detect with step delay is executed on exit of command
 - 01 = Continuous edge detect with step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 00 = Continuous edge detect with step delay is executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - **2:** This bit is only used with the PTGCTRL Step command software trigger option.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	RTSECSEL	PMPTTL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn

bit 15-2 Unimplemented: Read as '0'

bit 1 Not used by the PMP module.

bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

REGISTER 29-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'			
Legend:								
bit 7							bit 0	
			X<2	3:16>				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
							DILO	
bit 15							bit 8	
			X<3	1:24>				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 29-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
X<15:8>									
						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
		X<7:1>				—			
						bit 0			
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
	R/W-0 R/W-0	R/W-0 R/W-0 R/W-0 R/W-0 t W = Writable PR '1' = Bit is set	R/W-0 R/W-0 R/W-0 X X R/W-0 R/W-0 X X X X W = Writable bit X X Y Y Y	R/W-0 R/W-0 R/W-0 X<15:8> R/W-0 R/W-0 R/W-0 X<7:1> U U U U U U U U U U U U U U U U U U U U U	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 X<15:8> R/W-0 R/W-0 R/W-0 R/W-0 X<7:1> U U U U UR '1' = Bit is set '0' = Bit is cleared	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 X<15:8> X<15:8> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 X<7:1> X<7:1> X<15:8			

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	£	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic ⁽¹⁾			Min.	Typ. Max. Units Co			Conditions	
CTMU Current Source								
CTMUI1	IOUT1	Base Range	280	550	830	nA	CTMUICON<9:8> = 01	
CTMUI2	IOUT2	10x Range	2.8	5.5	8.3	μA	CTMUICON<9:8> = 10	
CTMUI3	IOUT3	100x Range	28	55	83	μA	CTMUICON<9:8> = 11	
CTMUI4	IOUT4	1000x Range	280	550	830	μA	CTMUICON<9:8> = 00	
CTMUFV1	VF		_	0.77	_	V		
CTMUFV2	VFVR		_	-1.38	_	mV/°C		

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

FIGURE 33-37: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch		0.50 BSC			
Optional Center Pad Width	W2			7.35	
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 **China - Shanghai**

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14