

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm310-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access (DMA)" (DS70348), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM

In addition, DMA can access the entire data memory space. The data memory bus arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA Controller include:

- CAN
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare
- DCI
- PMP
- Timers

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

11.5 High-Voltage Detect

The dsPIC33EPXXXGM3XX/6XX/7XX devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tri-state condition. The device remains in this I/O tristate condition as long as the high-voltage condition is present.

11.6 I/O Helpful Tips

- In some cases, certain pins, as defined in Table 33-10 under "Injection Current", have internal protection diodes to VDD and VSs. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in **Section 33.0 "Electrical Characteristics"** for additional information.

14.1 Input Capture Control Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7		1					bit 0
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	are Settable bit		
R = Readable	bit	W = Writable b	t	U = Unimple	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 15-14	Unimplemen	ted: Read as '0	,				
bit 13	ICSIDL: Inpu	t Capture x Stop	in Idle Mode Co	ontrol bit			
	1 = Input Ca	, pture x halts in C	PU Idle mode				
	0 = Input Ca	pture x continue	s to operate in C	PU Idle mode			
bit 12-10	ICTSEL<2:0>	Input Capture	x Timer Select b	oits			
	111 = Periph	eral clock (FP) is	the clock sourc	e of ICx			
	110 = Reserv	/ed					
	100 = T1CLK	is the clock sou	rce of ICx (only	the synchrono	us clock is sup	ported)	
	011 = T5CLK	is the clock sou	irce of ICx				
	010 = T4CLK	is the clock sou	Irce of ICx				
	001 = 12CLK	is the clock sol	Irce of ICx				
hit 9-7		ted: Read as '0	,				
bit 6-5		mber of Canture	s ner Interrunt S	elect hits			
	(this field is n	ot used if ICM<2	2:0> = 001 or 11	1)			
	11 = Interrup	ts on every fourt	h capture event				
	10 = Interrup	ts on every third	capture event				
	00 = Interrup	ts on every secc	ure event	it.			
bit 4	ICOV: Input (Capture x Overflo	ow Status Flag b	it (read-only)			
	1 = Input Ca	pture x buffer ov	erflow occurred				
	0 = No Input	Capture x buffe	r overflow occuri	red			
bit 3	ICBNE: Input	t Capture x Buffe	er Not Empty Sta	tus bit (read-o	nly)		
	1 = Input Ca	pture x buffer is	not empty, at lea	ist one more ca	apture value ca	in be read	
		pture x buffer is	empty				
bit 2-0	ICM<2:0>: In	put Capture x M	ode Select bits	unt nin only in		d Idla madaa	(rising odgo
	detect	capture x function	ontrol bits are no	of applicable)	CPU Sleep an	a late modes	(insing edge
	110 = Unused (module disabled)						
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)						
	100 = Captu	re mode, every 4	th rising edge (Prescaler Capi	ture mode)		
	011 = Captu 010 = Captu	re mode, every l	alling edge (Sim	pie Capture m ple Capture m	lode)		
	001 = Captu	re mode, every e	edge, rising and	falling (Edge D	etect mode, IC	I<1:0>), is not	t used in this
	mode))					
	000 = Input Capture x module is turned off						

16.0 HIGH-SPEED PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Speed PWM" (DS70645), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices support a dedicated Pulse-Width Modulation (PWM) module with up to 12 outputs.

The high-speed PWMx module consists of the following major features:

- · Six PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and a frequency resolution of 7.14 ns
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 7.14 ns.

The high-speed PWMx module contains up to six PWM generators. Each PWMx generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADCx module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADCx module, based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 input pins that utilize PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs, which include FLT1 and FLT2. The inputs are remappable using the PPS feature. FLT3 is available on 44-pin, 64-pin and 100-pin packages; FLT4 through FLT8 are available on specific pins on 64-pin and 100-pin packages, and FLT32, which has been implemented with Class B safety features, and is available on a fixed pin on all devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled high externally or the internal pull-up resistor in the CNPUx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCONx<1:0>), regardless of the state of FLT32.

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 - 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
 - 0 = PWMxH and PWMxL pins are mapped to their respective pins
- bit 0 OSYNC: Output Override Synchronization bit
 - 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- **Note 1:** These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-20: TRIGX: PWMX PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimpler	mented bit, rea	id as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADCx module.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7BP3	F7BP2	F7BP1	F7BP0	F6BP3	F6BP2	F6BP1	F6BP0
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F5BP3	F5BP2	F5BP1	F5BP0	F4BP3	F4BP2	F4BP1	F4BP0
bit 7 bit 0							
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-12	F7BP<3:0>:	RX Buffer Masl	c for Filter 7 b	its			
	1111 = Filter	hits received in	RX FIFO bu	ffer			
	1110 = Filter	hits received in	n RX Buffer 14	1			
	•						
	•						
	•	h : 4					
	0001 = Filter hits received in RX Buffer 0						
bit 11-8	F6BP<3:0>:	RX Buffer Masl	k for Filter 6 b	its (same value	es as bits 15-12))	
bit 7-4	F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits 15-12)						

REGISTER 21-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2

REGISTER 21-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3

F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits 15-12)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11BP3	F11BP2	F11BP1	F11BP0	F10BP3	F10BP2	F10BP1	F10BP0
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F9BP3	F9BP2	F9BP1	F9BP0	F8BP3	F8BP2	F8BP1	F8BP0
bit 7		•					bit 0
Lonondi							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	F11BP<3:0>: RX Buffer Mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 •
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits 15-12)
bit 7-4	F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits 15-12)
bit 3-0	F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)

© 2013-2014 Microchip Technology Inc.

bit 3-0

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 22-1: CTMU BLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	—	ADDMAEN	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	—	—	—	DMABL2	DMABL1	DMABL0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '0)'					
bit 8	ADDMAEN: /	ADCx DMA Ena	able bit					
	1 = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA							
bit 7-3	T-3 Linimplemented: Read as '0'							
bit 2-0	bit 2-0 DMABI <2:0>: Selects Number of DMA Buffer Locations per Analog Input bits							
	111 = Allocates 128 words of buffer to each analog input 101 = Allocates 64 words of buffer to each analog input 101 = Allocates 32 words of buffer to each analog input 100 = Allocates 16 words of buffer to each analog input							

REGISTER 23-4: ADxCON4: ADCx CONTROL REGISTER 4

- 011 =Allocates 16 words of buffer to each analog input
- 010 =Allocates 8 words of buffer to each analog input 010 = Allocates 4 words of buffer to each analog input
- 001 =Allocates 2 words of buffer to each analog input
- 000 =Allocates 1 word of buffer to each analog input

REGISTER 23-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER⁽³⁾ (CONTINUED)

CHONA: Channel 0 Negative Input Select for Sample MUXA bit 1 = Channel 0 negative input is AN1 ⁽¹⁾ 0 = Channel 0 negative input is VREFL
Unimplemented: Read as '0'
CH0SA<5:0>: Channel 0 Positive Input Select for Sample MUXA bits ^(1,4,5)
<pre>1111111 = Channel 0 positive input is (AN63) unconnected 111110 = Channel 0 positive input is (AN62) the CTMU temperature voltage 111101 = Channel 0 positive input is (AN61) reserved</pre>
•
•
<pre>110010 = Channel 0 positive input is (AN50) reserved 110001 = Channel 0 positive input is AN49 110000 = Channel 0 positive input is AN48 101111 = Channel 0 positive input is AN47 101110 = Channel 0 positive input is AN46 •</pre>
<pre>011010 = Channel 0 positive input is AN26 011001 = Channel 0 positive input is AN25 or Op Amp 5 output voltage⁽²⁾ 011000 = Channel 0 positive input is AN24 •</pre>
000111 = Channel 0 positive input is AN7 000110 = Channel 0 positive input is AN6 or Op Amp 3 output voltage ⁽²⁾ 000101 = Channel 0 positive input is AN5 000100 = Channel 0 positive input is AN4 000011 = Channel 0 positive input is AN3 or Op Amp 1 output voltage ⁽²⁾ 000010 = Channel 0 positive input is AN2 000001 = Channel 0 positive input is AN1 000001 = Channel 0 positive input is AN1

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality are enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.
 - 4: Analog input selections for ADC1 are shown here. AN32-AN63 selections are not available for ADC2. The CH0SB5 and CH0SA5 bits are 'Reserved' for ADC2 and should be programmed to '0'.
 - **5:** Analog inputs, AN32-AN49, are available only when the ADCx is working in 10-bit mode.

24.2 DCI Control Registers

REGISTER 24-1: DCICON1: DCI CONTROL REGISTER 1

	r O		r O						
	1-0		1-0						
bit 15	I	DCIGIDE	I	DLOOI	COCKD	COCKL	bit 8		
511 15									
R/W-0	R/W-0	R/W-0	r-0	r-0	r-0	R/W-0	R/W-0		
UNFM	CSDOM	DJST	r	r	r	COFSM1	COFSM0		
bit 7							bit 0		
. .									
Legend:	I: r = Reserved bit								
R = Reada		vv = vvritable b	IT	U = Unimplem	iented bit, read a	s 'U' x = Dit io unkno			
-n = value	atPOR	= Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unknown	own		
bit 15	DCIEN: DCI M	lodule Enable bi	t						
	1 = DCI modul	e is enabled							
	0 = DCI modul	e is disabled							
bit 14	Reserved: Re	ad as '0'							
bit 13	DCISIDL: DCI	Stop in Idle Cor	ntrol bit						
	1 = Module wil 0 = Module wil	I halt in CPU IdI I continue to ope	e mode erate in CPU lo	dle mode					
bit 12	Reserved: Re	ad as '0'							
bit 11	DLOOP: Digita	al Loopback Mo	de Control bit						
	1 = Digital Loo	pback mode is e	enabled; CSDI	and CSDO pin	s are internally c	onnected			
1.11.4.0	0 = Digital Loo	pback mode is o	disabled						
bit 10	CSCKD: Samp	ble Clock Directi	on Control bit	a anablad					
	0 = CSCK pin	is an output whe	en DCI module	is enabled					
bit 9	CSCKE: Samp	ole Clock Edge (Control bit						
	1 = Data chang	ges on serial clo	ck falling edge	, sampled on s	erial clock rising	edge			
	0 = Data chang	ges on serial clo	ck rising edge	, sampled on se	erial clock falling	edge			
bit 8	COFSD: Fram	e Synchronizati	on Direction C	ontrol bit					
	1 = COFS pin 0 = COFS pin	is an input wher	n DCI module i An DCI module	s enabled					
bit 7	UNFM: Underf	low Mode bit							
	1 = Transmits	last value writter	n to the Transr	nit registers on	a transmit under	flow			
	0 = Transmits	ʻ0' <mark>s on a trans</mark> m	it underflow						
bit 6	CSDOM: Seria	al Data Output M	lode bit						
	1 = CSDO pin	will be tri-stated	during disable	ed transmit time	e slots				
bit 5	D.IST DCI Dat	ta Justification (Sontrol hit						
Sit 0	1 = Data trans	mission/receptio	n is begun durir	ng the same ser	ial clock cycle as	the frame synchr	ronization pulse		
	0 = Data transmission/reception is begun one serial clock cycle after the frame synchronization pulse								
bit 4-2	Reserved: Re	ad as '0'							
bit 1-0	COFSM<1:0>:	Frame Sync M	ode bits						
	11 = 20-Bit AC	-LINK mode							
	$01 = I^2 S Frame$	e Sync mode							
	00 = Multi-Cha	annel Frame Syr	nc mode						

25.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Peripheral Trigger Generator (PTG)" (DS70669), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

25.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex, high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "steps", that the user writes to the PTG Queue register (PTGQUE0-PTQUE15), which performs operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple Clock Sources
- Two 16-Bit General Purpose Timers
- Two 16-Bit General Limit Counters
- Configurable for Rising or Falling Edge Triggering
- Generates Processor Interrupts to Include:
 - Four configurable processor interrupts
 - Interrupt on a step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to Receive Trigger Signals from these Peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to Trigger or Synchronize to these Peripherals:
- Watchdog Timer
- Output Compare
- Input Capture
- ADC
- PWM
- Op Amp/Comparator

25.3 Step Commands and Format

TABLE 25-1: PTG STEP COMMAND FORMAT

Step Command Byte:						
STEPx<7:0>						
	CMD<3:0>		OPTION<3:0>			
bit 7		bit 4 bit 3		bit 0		

bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>
	001x	PTGSTRB	Copy the value contained in CMD0:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>)
	0100	PTGWHI	Wait for a low-to-high edge input from selected PTG trigger input as described by OPTION<3:0>
	0101	PTGWLO	Wait for a high-to-low edge input from selected PTG trigger input as described by OPTION<3:0>
	0110	Reserved	Reserved
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION<3:0>
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd0>:OPTION<3:0>></cmd0>
	101x	PTGJMP	Copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR)
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR)
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0		
—	—	—	-	CVRR1	VREFSEL	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRR0	CVRSS	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15-12	Unimplemen	ted: Read as ')'						
bit 11	CVRR1: Com	parator Voltage	e Reference F	Range Selectio	n bit				
	See bit 5.								
bit 10	VREFSEL: Vo	oltage Referend	ce Select bit						
	1 = CVREFIN = 0 = CVREFIN i	= VREF+ s generated by	the resistor r	etwork					
hit 9-8		ted: Read as '	יי ז'						
bit 7	CVREN: Com	narator Voltag	- Reference F	nable bit					
bit /	1 = Comparat	for voltage refe	rence circuit is	s powered on					
	0 = Comparat	tor voltage refe	rence circuit is	s powered dov	vn				
bit 6	CVROE: Corr	parator Voltag	e Reference (Dutput Enable	on CVREF10 Pir	n bit			
	1 = Voltage le	vel is output or	the CVREF1	o pin					
	0 = Voltage le	vel is disconne	cted from the	CVREF10 pin					
bit 11, 5	CVRR<1:0>:	Comparator Vo	ltage Referer	nce Range Sel	ection bits				
	11 = 0.00 CV	RSRC to 0.94, w	/ith CVRSRC/1	6 step-size					
	10 = 0.33 CV	RSRC to 0.90, w	/ith CVRSRC/2	4 step-size					
	00 = 0.25 CV	RSRC to 0.75, w	ith CVRSRC/3	2 step-size					
bit 4	CVRSS: Com	parator Voltage	e Reference S	Source Selection	on bit				
	1 = Comparat	tor voltage refe	rence source,	CVRSRC = CV	REF+ – AVSS				
	0 = Comparat	tor voltage refe	rence source,	CVRSRC = AV	DD – AVSS				
bit 3-0	CVR<3:0> Comparator Voltage Reference Value Selection $0 \le \text{CVR}<3:0> \le 15$ bits								
	When $CVRR<1:0> = 11:$ $CVRFF = (CVR<3:0>/16) \bullet (CVRSRC)$								
	When CVRR	<1:0> = 10:							
	$\overline{\text{CVREF}} = (1/3)$	• (CVRSRC) +	(CVR<3:0>/24	4) • (CVRSRC)					
	When CVRR-	<1:0> = 01:		,					
	$CVREF = (CVR < 3:0 > /24) \bullet (CVRSRC)$								
	When CVRR	<1:0> = 00:		$(\mathbf{O}) = (\mathbf{O})$					
	$CVREF = (1/4) \bullet (CVRSRC) + (CVR < 3:0 > /32) \bullet (CVRSRC)$								

REGISTER 26-7: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

REGISTER 27-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
	Contains a value from 0 to 9.
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 27-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

28.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Parallel Master Port (PMP)" (DS70576), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

TABLE 33-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.SymbolCharacteristic			Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	120	—	340	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{Fosc}}$$

$$\frac{Fosc}{\sqrt{Time Base or Communication Clock}}$$

For example, if FOSC = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 33-18: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	Standar Operatir	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic	Min.	Тур.	Max.	Units	Condi	tions	
Internal	FRC Accuracy @ FRC Fre	equency	= 7.3728	MHz ⁽¹⁾				
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6V$		
F20b	FRC	-2	1.5	+2	%	$-40^{\circ}C \le T_A \le +125^{\circ}C \qquad V_{DD} = 3.0\text{-}3.6V$		

Note 1: Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 33-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic	Min. Typ. Max. Units Conditions					tions		
LPRC	@ 32.768 kHz								
F21a	LPRC	-15	5	+15	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6V$			
F21b	LPRC	-30	10	+30	%	$-40^{\circ}C \le TA \le +125^{\circ}C VDD = 3.0-3.6V$			

^{© 2013-2014} Microchip Technology Inc.

TABLE 33-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽²⁾		Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)
			Asynchronous	35	_	—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescaler value (1, 8, 64, 256)
			Asynchronous	10		—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N		_	ns	N = Prescaler value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS (T1CON<1>) bit)		DC		50	kHz	
TA20	TCKEXTMRL	Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 33-38:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V						
			(unless otherwise stated)						
			Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
			$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCKx Input Frequency	—	—	15	MHz	(Note 3)		
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCKx Input Rise Time	—	_		ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120			ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	—	ns	(Note 4)		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 33-53: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions (see Note 2): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
VR310	TSET	Settling Time		1	10	μS	(Note 1)	

Note 1: Settling time is measured while CVRR = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions		
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb			
VRD311	CVRAA	Absolute Accuracy of Internal DAC Input to Comparators	—	—	±25	mV	AVDD = CVRSRC = 3.3V		
VRD312	CVRAA1	Absolute Accuracy of CVREFXO pins	_	—	+75/-25	mV	AVDD = CVRSRC = 3.3V		
VRD313	CVRSRC	Input Reference Voltage	0	—	AVDD + 0.3	V			
VRD314	CVRout	Buffer Output Resistance	—	1.5k	_	Ω			
VRD315	CVCL	Permissible Capacitive Load (CVREFxO pins)	—	—	25	pF			
VRD316	IOCVR	Permissible Current Output (CVREFxO pins)	_	—	1	mA			
VRD317	Ion	Current Consumed When Module is Enabled	—	—	500	μA	AVDD = 3.6V		
VRD318	IOFF	Current Consumed When Module is Disabled	—	_	1	nA	AVDD = 3.6V		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-085C Sheet 1 of 2