

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I2S, Motor Control PWM, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 49x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm310-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 4-12: PWM GENERATOR 4 REGISTER MAP

	• ••																	
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0C80	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON4	0C82	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON4	0C84	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC4	0C86		PDC3<15:0> 0000								0000							
PHASE4	0C88								PHASE	3<15:0>								0000
DTR4	0C8A	_	_							DTR3	<13:0>							0000
ALTDTR4	0C8C	_	_							ALTDTR	3<13:0>							0000
SDC4	0C8E								SDC4	<15:0>								0000
SPHASE4	0C90								SPHASE	4<15:0>								0000
TRIG4	0C92								TRGCM	P<15:0>								0000
TRGCON4	0C94	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	_	_		_	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP4	0C98								PWMCA	P4<15:0>								0000
LEBCON4	0C9A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	-	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY4	0C9C	—	_	_	_						LEB<	11:0>						0000
AUXCON4	0C9E	_	_	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000
l egend:	= un	molemented read as '0' Reset values are shown in hexadecimal																

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PWM GENERATOR 5 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON5	0CA0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON5	0CA5	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON5	0CA4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC5	0CA6		PDC5<15:0> 0									0000						
PHASE5	0CA8								PHASE	5<15:0>								0000
DTR5	0CAA	_	_							DTR5<	13:0>							0000
ALTDTR5	0CAC	_	_							ALTDTR	5<13:0>							0000
SDC5	0CAE								SDC5	<15:0>								0000
SPHASE5	0CB0								SPHASE	=5<15:0>								0000
TRIG5	0CB2								TRGCM	1P<15:0>								0000
TRGCON5	0CB4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	_	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
PWMCAP5	0CB8								PWMCA	P5<15:0>								0000
LEBCON5	0CBA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY5	0CBC	_	_	_	_						LEB<	11:0>						0000
AUXCON5	0CBE		-	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17:	I2C1 AND I2C2 REGISTER MAP
--------------------	----------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	—	-	—	_	—	_				I2C1 Receiv	ve Register				0000
I2C1TRN	0202	—	_	_	_	—	_	—	_				I2C1 Transr	nit Register				OOFF
I2C1BRG	0204							В	aud Rate C	Generator R	egister							0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addre	ess Register					0000
I2C1MSK	020C	_	_	_	_	_	_				12	2C1 Address	Mask Regis	ster				0000
I2C2RCV	0210	_	_	_	_	_	_	_	-				I2C2 Receiv	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	-				I2C2 Transr	nit Register				OOFF
I2C2BRG	0214							В	aud Rate C	Generator R	egister							0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	—	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	—	_	I2C2 Address Register 0							0000			
I2C2MSK	021C		_	—	—	—	_	I2C2 Address Mask Register							0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_		—		—	—	—				UART1	Fransmit Re	gister				xxxx
U1RXREG	0226	_	_	_	_	_	_	_				UART1	Receive Re	gister				0000
U1BRG	0228							Ba	ud Rate C	Generator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Fransmit Re	gister				xxxx
U2RXREG	0236	_	—	_	_	—	_	—				UART2	Receive Re	gister				0000
U2BRG	0238							Ba	aud Rate Generator Prescaler							0000		

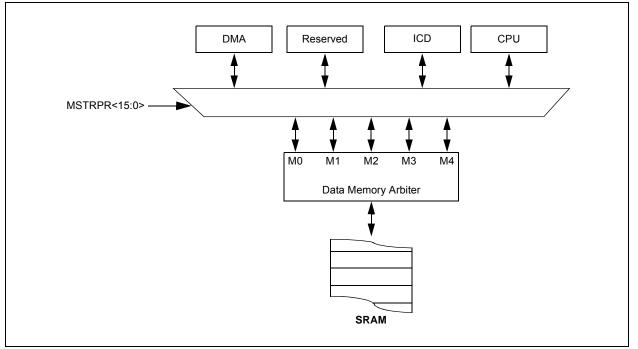
Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest with M2 in between). Also, all the bus masters with priorities below


that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-65.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-65:	DATA MEMORY BUS
	ARBITER PRIORITY

Drierity	MSTRPR<15:0> Bit Setting ⁽¹⁾						
Priority	0x0000	0x0020					
M0 (highest)	CPU	DMA					
M1	Reserved	CPU					
M2	Reserved	Reserved					
M3	DMA	Reserved					
M4 (lowest)	ICD	ICD					

Note 1: All other values of MSTRPR<15:0> are reserved.

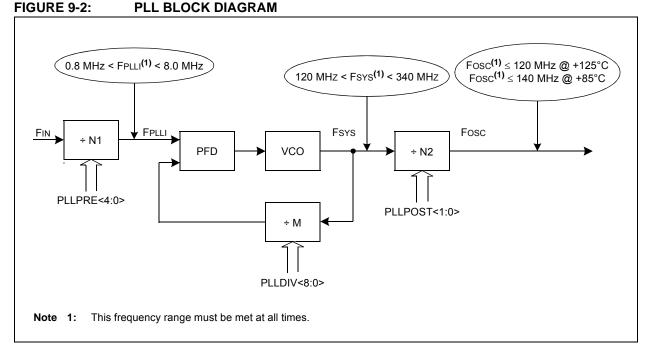
FIGURE 4-12: ARBITER ARCHITECTURE

9.1 CPU Clocking System

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices provides seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- · Secondary (LP) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FSYS).

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2) \times 2(PLLPOST < 1:0 > + 1)}\right)$$

Where:

N1 = PLLPRE<4:0> + 2 N2 = 2 x (PLLPOST<1:0> + 1) M = PLLDIV<8:0> + 2

EQUATION 9-3: Fvco CALCULATION

 $FSYS = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV < 8:0 > + 2)}{(PLLPRE < 4:0 > + 2)}\right)$

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit (read/clear by application) ⁽⁵⁾
	1 = FSCM has detected clock failure0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enables Secondary Oscillator (SOSC)0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS70580), available from the Microchip web site for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This register resets only on a Power-on Reset (POR).
 - 4: Secondary Oscillator (SOSC) selection is valid on 64-pin and 100-pin devices, and defaults to FRC/N on 44-pin devices.
 - 5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

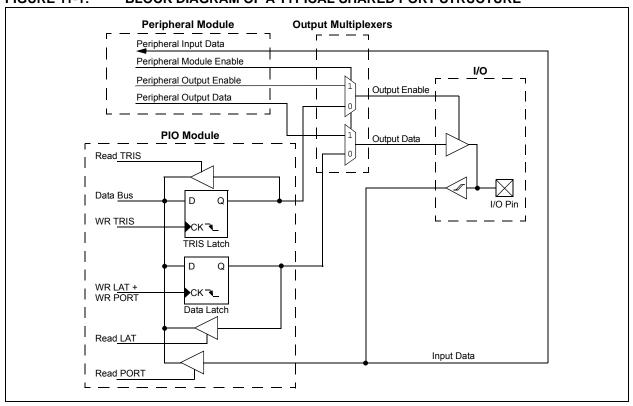
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports" (DS70000598) which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of


the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				C2RXR<6:0>				
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				C1RXR<6:0>				
bit 7							bit (
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value a	at POR	'1' = Bit is set '0' = Bit is c			eared x = Bit is unknown			
	11111100 = • • • • • •	1-2 for input pin nput tied to RPI nput tied to CM nput tied to Vss	124 P1	,				
bit 7		nted: Read as '						
bit 6-0	C10VD-6.0	>: Assign CAN1				Do Dio hito		

REGISTER 11-20: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

Note 1: This register is not available on dsPIC33EPXXXGM3XX devices.

REGISTER 11-36: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
_	—			RP55	R<5:0>							
bit 15							bit 8					
U-0	U-0	R/W-0		D/M/ 0	D/M/ 0	D/M/ O	DAM 0					
0-0	0-0	R/W-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
— — RP54R<5:0>												
bit 7							bit 0					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-14	Unimpleme	nted: Read as '	0'									
bit 13-8		Peripheral Out 1-3 for peripheral	•	n is Assigned to mbers)	RP55 Output I	Pin bits						
bit 7-6	Unimplemented: Read as '0'											
bit 5-0	•											

(see Table 11-3 for peripheral function numbers)

REGISTER 11-37: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—			RP57R<5:0>						
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—			RP56R<	<5:0>					
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpleme	nted bit, rea	d as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13-8	RP57R<5:0>	• Peripheral Ou	Itout Function	n is Assigned to RI	257 Output	Pin bits				

bit 13-8 **RP57R<5:0>:** Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP56R<5:0>:** Peripheral Output Function is Assigned to RP56 Output Pin bits (see Table 11-3 for peripheral function numbers)

NOTES:

19.1 I²C Control Registers

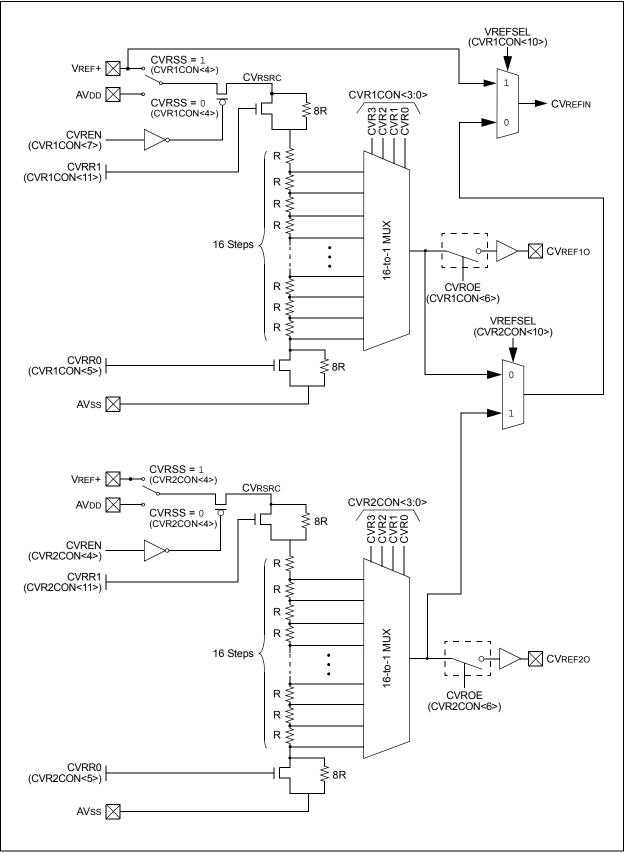
REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER	19-1: I2CxC	ON: I2Cx CC	ONTROL REG	SISTER								
R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0					
I2CEN		I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN					
bit 15		•		·			bit 8					
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	RSEN	SEN						
bit 7				I			bit					
Legend:		HC = Hardwa	are Clearable bi	it								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	iown					
bit 15	12CEN: 12Cx	Enable bit										
					and SCLx pins a ed by port funct		ns					
bit 14	Unimplemen	ted: Read as	'0'									
bit 13	12CSIDL: 12C	x Stop in Idle	Mode bit									
			peration when o ation in Idle mo		an Idle mode							
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C [™] slave)											
		1 = Releases SCLx clock										
		0 = Holds SCLx clock low (clock stretch)										
		If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clears										
	at the beginning of every slave data byte transmission. Hardware clears at the end of every slave address byte reception. Hardware clears at the end of every slave data byte reception.											
		<u>If STREN = 0:</u>										
		Bit is R/S (i.e., software can only write '1' to release clock). Hardware clears at the beginning of every slave data byte transmission. Hardware clears at the end of every slave address byte reception.										
hit 11	-				-		eception.					
bit 11	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit ⁽¹⁾ 1 = IPMI mode is enabled; all addresses are Acknowledged											
	 IPMI mode is enabled; all addresses are Acknowledged IPMI mode is disabled 											
bit 10	A10M: 10-Bit	Slave Addres	s bit									
		1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address										
bit 9	DISSLW: Disa	DISSLW: Disable Slew Rate Control bit										
		control is disa control is ena										
bit 8	SMEN: SMB	SMEN: SMBus Input Levels bit										
	1 = Enables I	-	lds compliant v	vith the SMBu	s specification							
bit 7		•		rating as I ² C s	slave)							
	1 = Enables i reception	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 										
	0 = General	call address is	disabled									

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware sets or clears when Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware sets or clears after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware sets when I2CxRCV is written with a received byte. Hardware clears when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT				
bit 15	•	•		•	•		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
EDG2MOD	EDG2POL	EDG2SEL3	L3 EDG2SEL2 EDG2SEL1 EDG2SEL0 — -								
bit 7				•	•		bit 0				
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit							
	•	edge-sensitive									
	•	level-sensitive									
bit 14		dge 1 Polarity		I							
		programmed f programmed f									
bit 13-10	-	:0>: Edge 1 So	-								
51115-10	1111 = Fosc	0 >. Euge 1 00		2							
	1111 = FOSC 1110 = OSCI pin										
	1101 = FRC oscillator										
	1100 = Reserved										
	1011 = Internal LPRC oscillator										
	1010 = Reserved 100x = Reserved										
	01xx = Reser	rved									
	0011 = CTED1 pin										
	0010 = CTED2 pin										
	0001 = OC1 module 0000 = Timer1 module										
bit 9	EDG2STAT: E	Edge 2 Status b	it								
		-		vritten to contro	I the edge sou	rce.					
	Indicates the status of Edge 2 and can be written to control the edge source. 1 = Edge 2 has occurred										
	•	as not occurred									
bit 8	EDG1STAT: Edge 1 Status bit										
		-	1 and can be v	written to contro	ol the edge sour	rce.					
	1 = Edge 1 ha	as not occurred	I								
bit 7	•	Edge 2 Edge Sa		Selection bit							
		edge-sensitive									
	-	level-sensitive									
bit 6	EDG2POL: E	dge 2 Polarity	Select bit								
		programmed f									
	0 = Edge 2 is	programmed f	or a negative e	edge response							
	he TGEN bit is 0G2SELx bits fi				selected as the	e Edge 2 sourc	e in the				

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

24.2 DCI Control Registers

REGISTER 24-1: DCICON1: DCI CONTROL REGISTER 1

1 bit 14 Re bit 13 De 1 0 bit 12 Re bit 11 DI	e bit POR CIEN: DCI M = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	e is disabled	t	r-0 r U = Unimplem '0' = Bit is clea	r-0 r ented bit, read a	CSCKE R/W-0 COFSM1 as '0' x = Bit is unkno	COFSD bit 8 R/W-0 COFSM0 bit 0			
R/W-0 UNFM bit 7 Legend: R = Readable -n = Value at bit 15 D0 bit 14 Re bit 13 D0 bit 13 D0 bit 13 D0 bit 13 D0 bit 14 Re bit 13 D0 bit 14 Re bit 13 D0 bit 14 D1	CSDOM e bit POR CIEN: DCI M = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	DJST r = Reserved bi W = Writable bi '1' = Bit is set lodule Enable bit e is enabled e is disabled ad as '0'	r t t	r U = Unimplem	r ented bit, read a	COFSM1	R/W-0 COFSM0 bit (
UNFM bit 7 Legend: R = Readable -n = Value at bit 15 D0 1 0 bit 14 Re bit 13 D0 1 0 bit 12 Re bit 12 Re	CSDOM e bit POR CIEN: DCI M = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	DJST r = Reserved bi W = Writable bi '1' = Bit is set lodule Enable bit e is enabled e is disabled ad as '0'	r t t	r U = Unimplem	r ented bit, read a	COFSM1	COFSM0 bit (
UNFM bit 7 Legend: R = Readable -n = Value at bit 15 D0 1 0 bit 14 Re bit 13 D0 1 0 bit 12 Re bit 12 Re	CSDOM e bit POR CIEN: DCI M = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	DJST r = Reserved bi W = Writable bi '1' = Bit is set lodule Enable bit e is enabled e is disabled ad as '0'	r t t	r U = Unimplem	r ented bit, read a	COFSM1	COFSM0 bit (
bit 7 Legend: R = Readable -n = Value at bit 15 De 1 0 bit 14 Re bit 13 De 1 0 bit 12 Re bit 12 Re	e bit POR = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	r = Reserved bi W = Writable bi '1' = Bit is set odule Enable bit e is enabled e is disabled ad as '0'	t t	U = Unimplem	ented bit, read a	as '0'	bit (
R = Readable -n = Value at bit 15 De bit 14 Re bit 13 De bit 13 De bit 12 Re bit 11 De	e bit POR CIEN: DCI M = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	W = Writable bi '1' = Bit is set lodule Enable bit e is enabled e is disabled ad as '0'	t	-			own			
R = Readable -n = Value at bit 15 D bit 14 Re bit 13 D bit 13 D bit 12 Re bit 11 D	POR = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	'1' = Bit is set lodule Enable bit e is enabled e is disabled ad as '0'		-			own			
bit 15 D(1 0 bit 14 R(bit 13 D(1 0 bit 12 R(bit 11 D)	CIEN: DCI M = DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	odule Enable bi e is enabled e is disabled ad as '0'	t	-			own			
1 0 bit 14 8 bit 13 1 0 bit 12 8 bit 12 1 0 bit 12 1 0	= DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	e is enabled e is disabled ad as '0'	t							
1 0 bit 14 Re bit 13 1 0 bit 12 Re bit 11 D	= DCI module = DCI module eserved: Rea CISIDL: DCI = Module will	e is enabled e is disabled ad as '0'	t							
0 bit 14 Re bit 13 De 1 0 bit 12 Re bit 11 De	= DCI module eserved: Rea CISIDL: DCI = Module will	e is disabled ad as '0'								
bit 14 Re bit 13 D 1 0 bit 12 Re bit 11 D	eserved: Rea CISIDL: DCI = Module will	ad as '0'								
bit 13 D(1 0 bit 12 Re bit 11 DI	CISIDL: DCI = Module will									
1 0 bit 12 Re bit 11 DI	= Module will	Stop in Idle Con								
0 bit 12 Re bit 11 Di		•								
bit 12 Re bit 11 DI		I halt in CPU Idle I continue to ope		Idle mode						
bit 11 DI	eserved: Rea	-								
	DLOOP: Digital Loopback Mode Control bit									
	1 = Digital Loopback mode is enabled; CSDI and CSDO pins are internally connected									
		pback mode is c								
bit 10 C	SCKD: Samp	ole Clock Directi	on Control bi	t						
		is an input when is an output whe								
bit 9 C	SCKE: Samp	ole Clock Edge (Control bit							
1	= Data chang	ges on serial clo	ck falling edg	je, sampled on s	erial clock rising	l edge				
0	= Data chang	ges on serial clo	ck rising edg	e, sampled on se	erial clock falling	l edge				
		e Synchronizatio								
	 1 = COFS pin is an input when DCI module is enabled 0 = COFS pin is an output when DCI module is enabled 									
	•	is an output whe low Mode bit	en DCI modu	le is enabled						
1	= Transmits I			smit registers on	a transmit unde	rflow				
		al Data Output M								
		•		led transmit time	slots					
				ansmit time slots						
bit 5 D.	JST: DCI Dat	ta Justification C	ontrol bit							
				ring the same ser one serial clock c						
bit 4-2 Re	eserved: Rea	ad as '0'								
bit 1-0 CO	OFSM<1:0>:	Frame Sync Mo	ode bits							
11	1 = 20-Bit AC	-Link mode								
	0 = 16-Bit AC									
	1 = I ² S Frame) = Multi-Cha	e Sync mode Innel Frame Syn	ic mode							

FIGURE 26-2: OP AMP/COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

28.1 PMP Control Registers

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER⁽³⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PMPEN		PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0			
CSF1	CSF0	ALP	CS2P	CS1P	BEP	BEP WRSP RDS				
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	Reset	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
			•	0 2.1.0 0.0.						
bit 15	PMPEN: Par	allel Master Po	rt Enable bit							
	1 = PMP mo	dule is enabled								
	0 = PMP mo	dule is disabled	, no off-chip ac	cess is perform	ned					
bit 14	Unimpleme	nted: Read as '	0'							
bit 13	PSIDL: PMP	Stop in Idle Mo	ode bit							
		nues module op es module opera			le mode					
bit 12-11		-								
	ADRMUX<1:0>: Address/Data Multiplexing Selection bits 11 = Reserved									
	10 = All 16 bits of address are multiplexed on PMD<7:0> pins									
	01 = Lower eight bits of address are multiplexed on PMD<7:0> pins, upper eight bits are on PMA<15:8>									
		s and data appe	-	-						
bit 10	-	te Enable Port/	Enable bit (16-	Bit Master mod	le)					
		ort is enabled								
h # 0		ort is disabled	a ba Davit Evabl	- h:t						
bit 9	PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled									
	0 = PMWR/PMENB port is disabled									
bit 8		ead/Write Strob		oit						
		MWR port is er								
	0 = PMRD/P	MWR port is di	sabled							
bit 7-6	CSF<1:0>: (Chip Select Fun	ction bits							
	11 = Reserved									
	10 = PMCS1 and PMCS2 function as Chip Select									
	01 = PMCS2 functions as Chip Select, PMCS1 functions as Address Bit 14 00 = PMCS1 and PMCS2 function as Address Bits 15 and 14									
bit 5		s Latch Polarity			1 14					
bit 5		gh (PMALL and								
		w (PMALL and								
bit 4		Select 1 Polarit								
	1 = Active-hi		-							
	0 = Active-lo	w (PMCS2)								
Note 1: Th		no effect when	their correspor	nding pins are u	sed as addres	s lines.				

- **2:** PMCS1 applies to Master mode and PMCS applies to Slave mode.
- **3:** This register is not available on 44-pin devices.

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER⁽⁴⁾ (CONTINUED)

- bit 5-2 WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 TP

 0001 = Wait of additional 1 TP
 0000 = No additional Wait cycles (operation forced into one TP)

 bit 1-0 WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits^(1,2,3) 11 = Wait of 4 TP 10 = Wait of 3 TP 01 = Wait of 2 TP 00 = Wait of 1 TP
- Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See Section 4.1.8 "Wait States" in the "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33/PIC24 Family Reference Manual" for more information.
 - 2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
 - **3:** TP = 1/FP.
 - 4: This register is not available on 44-pin devices.

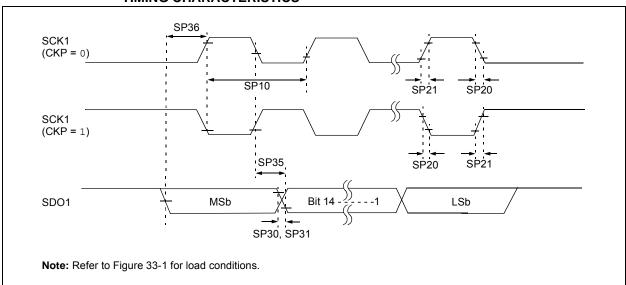
DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	VBORMIN	—	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	—	10	—	mA		
D138a	Tww	Word Write Cycle Time	46.5	46.9	47.4	μs	Tww = 346 FRC cycles, Ta = +85°C (Note 2)	
D138b	Tww	Word Write Cycle Time	46.0	—	47.9	μs	Tww = 346 FRC cycles, TA = +125°C (Note 2)	
D136a	TPE	Row Write Time	0.667	0.673	0.680	ms	Trw = 4965 FRC cycles, TA = +85°C (Note 2)	
D136b	TPE	Row Write Time	0.660	—	0.687	ms	Trw = 4965 FRC cycles, TA = +125°C (Note 2)	
D137a	TPE	Page Erase Time	19.6	20	20.1	ms	TPE = 146893 FRC cycles, TA = +85°C (Note 2)	
D137b	TPE	Page Erase Time	19.5	—	20.3	ms	TPE = 146893 FRC cycles, TA = +125°C (Note 2)	

TABLE 33-13: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 33-19) and the value of the FRC Oscillator Tuning register.

TABLE 33-36:SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS


АС СНА	ARACTERIS	Standard Op (unless othe Operating ter	erwise st mperatur	t ated) re -40° -40°	C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max.		Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency		_	15	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time	—		_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	—		_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—		ns	(Note 4)
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-24: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 33-41: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHA	RACTERIST	īCS	(unless	d Operati otherwise g tempera	e stated) iture -4	$0^{\circ}C \leq TA$	 Section 5.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		25	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—		_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.