

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betalls	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm604-i-ml

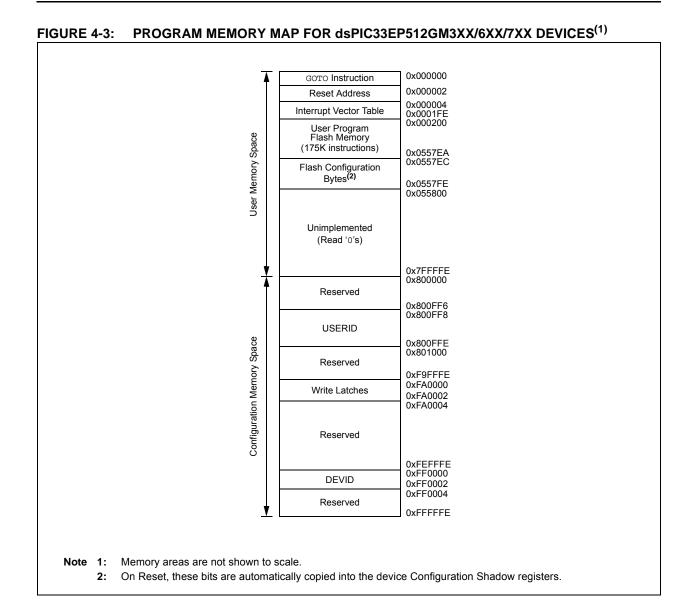
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description					
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 input (Buffered Slave modes) and					
				output (Master modes).					
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 input (Buffered Slave modes) and					
PMA2-PMA13	ο		No	output (Master modes). Parallel Master Port Address Bits 2-13 (Demultiplexed Master modes)					
PMBE	ŏ		No	Parallel Master Port Byte Enable strobe.					
PMCS1, PMCS2	ŏ	_	No	Parallel Master Port Chip Select 1 and 2 strobe.					
PMD0-PMD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or					
				Address/Data (Multiplexed Master modes).					
PMRD	0		No	Parallel Master Port Read strobe.					
PMWR	0	_	No	Parallel Master Port Write strobe.					
FLT1-FLT2 ⁽¹⁾	I	ST	Yes	PWMx Fault Inputs 1 through 2.					
FLT3-FLT8 ⁽¹⁾	I	ST	No	PWMx Fault Inputs 3 through 8					
FLT32	I	ST	No	PWMx Fault Input 32					
DTCMP1-DTCMP6 ⁽¹⁾	I	ST	Yes	PWMx Dead-Time Compensation Inputs 1 through 6.					
PWM1L-PWM6L ⁽¹⁾	0	_	No	PWMx Low Outputs 1 through 7.					
PWM1H-PWM6H ⁽¹⁾	0	_	No	PWMx High Outputs 1 through 7.					
SYNCI1 ⁽¹⁾ , SYNCI2 ⁽¹⁾	I	ST	Yes	PWMx Synchronization Input 1.					
SYNCO1, SYNCO2 ⁽¹⁾	0	—	Yes	, ,					
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.					
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1					
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.					
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2					
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.					
PGEC3	Ι	ST	No	Clock input pin for Programming/Debugging Communication Channel 3					
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.					
AVdd ⁽²⁾	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.					
AVss	Р	Р	No	Ground reference for analog modules.					
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins.					
VCAP	Р	—	No	CPU logic filter capacitor connection.					
Vss	Р	_	No	Ground reference for logic and I/O pins.					
VREF+	I	Analog	No	Analog voltage reference (high) input.					
VREF-	Ι	Analog	No	Analog voltage reference (low) input.					
Legend: CMOS = CM ST = Schmit									

CMOS compatible input or output egena: ST = Schmitt Trigger input with CMOS levels O = Output PPS = Peripheral Pin Select TTL = TTL input buffer


Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾ (CONTINUED)

bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values 0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit
	 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply

- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
 - 3: Refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU" (DS70359) for more detailed information.

IABLE 4	4-0:	00	IPUIC			SIER W	AP											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							Ou	Itput Comp	are 1 Seco	ondary Regis	ter						xxxx
OC1R	0906								Output	Compare 7	1 Register							xxxx
OC1TMR	0908		Output Compare 1 Timer Value Register xxxx							xxxx								
OC2CON1	090A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	-	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							Ou	Itput Comp	are 2 Seco	ondary Regis	ter						xxxx
OC2R	0910								Output	Compare 2	2 Register							xxxx
OC2TMR	0912						-	Ou	tput Comp	are 2 Time	r Value Regis	ster		-				xxxx
OC3CON1	0914	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918		Output Compare 3 Secondary Register xxxx															
OC3R	091A		Output Compare 3 Register xxxx															
OC3TMR	091C						-	Ou	tput Comp	are 3 Time	r Value Regis	ster		-				xxxx
OC4CON1	091E	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							Ou	tput Comp	oare 4 Seco	ondary Regis	ter						xxxx
OC4R	0924								Output	Compare 4	4 Register							xxxx
OC4TMR	0926							Ou	tput Comp	are 4 Time	r Value Regis	ster						xxxx
OC5CON1	0928		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	092C							Ou	tput Comp	are 5 Seco	ondary Regis	ter						xxxx
OC5R	092E								Output	Compare &	5 Register							xxxx
OC5TMR	0930							Ou	tput Comp	are 5 Time	r Value Regis	ster						xxxx
OC6CON1	0932	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	0936							Ou	<u> </u>		ondary Regis	ter						xxxx
OC6R	0938								Output	Compare 6	6 Register							xxxx
OC6TMR	093A							Out	tput Comp	are 6 Time	r Value Regis	ster						xxxx

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4	4-33:	PERI	PHERA	L PIN 3	ELECI	INPUT	KEGISI		, FOK q	SPIC33				ICE3				
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>	>			_	—	_	_	_	_	_	_	0000
RPINR1	06A2	—	—	_	_	—	—	_	_	—				INT2R<6:0>	•			0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_			-	T2CKR<6:0	>			0000
RPINR7	06AE	—				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	_	IC4R<6:0>						—				IC3R<6:0>				0000	
RPINR9	06B2	_		IC6R<6:0>						_				IC5R<6:0>				0000
RPINR10	06B4	_				IC8R<6:0>		— IC7R<6:0>								0000		
RPINR11	06B6	—	—	-	—	—	_		_	—			(OCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0	>			_				FLT1R<6:0>	>			0000
RPINR14	06BC	—				QEB1R<6:0	>			—	QEA1R<6:0>						0000	
RPINR15	06BE	—	HOME1R<6:0> — INDX1R<6:0>							INDX1R<6:0>						0000		
RPINR16	06C0	—	QEB2R<6:0> — QEA2R<6:0>							QEA2R<6:0>						0000		
RPINR17	06C2	—			н	OME2R<6:	0>			—	INDX2R<6:0>					0000		
RPINR18	06C4	—	—	_	—	—	_	—	—	—	U1RXR<6:0>					0000		
RPINR19	06C6	—	—	_	—	—	—	—	—				I	J2RXR<6:0	>			0000
RPINR22	06CC	—			:	SCK2R<6:0	>			—				SDI2R<6:0>	>			0000
RPINR23	06CE	—	—	_	—	—	—	—	—					SS2R<6:0>				0000
RPINR24	06D0	—			(CSCKR<6:0	>			—				CSDIR<6:0>	>			0000
RPINR25	06D2	—	—	_	—	—	—	—	—				(COFSR<6:0	>			0000
RPINR26	06D4	—				C2RXR<6:0	>			—			(C1RXR<6:0	>			0000
RPINR27	06D6	—			ι	J3CTSR<6:()>			—			l	J3RXR<6:0	>			0000
RPINR28	06D8	—			ι	J4CTSR<6:()>			—			l	J4RXR<6:0	>			0000
RPINR29	06DA	—				SCK3R<6:0	>			—				SDI3R<6:0>	`			0000
RPINR30	06DC	—	—	—	—	—	—		—	—				SS3R<6:0>			•	0000
RPINR37	06EA	—			S	YNCI1R<6:	0>			—		—	_	—		_		0000
RPINR38	06EC	_				TCMP1R<6				—	_	—		—	—	_	—	0000
RPINR39	06EE	_				TCMP3R<6	-			—			D	TCMP2R<6:	0>			0000
RPINR40	06F0	—			D	TCMP5R<6	:0>			—			D	TCMP4R<6:	0>			0000
RPINR41	06F2	—	—	—	—	—	—	—	—	—			D	TCMP6R<6:	0>			0000

TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXGM60X/7XX DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	_	—	_	—	_	_	_				
bit 15	·						bit 8				
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1				
—	—	—	_	LSTCH<3:0>							
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-4	Unimplemen	ted: Read as 'o	o'								
bit 3-0	LSTCH<3:0>	: Last DMA Co	ntroller Chanr	nel Active Statu	is bits						
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sin	ice system Res	set						
	•										
	•										
	•										
	0100 = Reserved 0011 = Last data transfer was handled by Channel 3 0010 = Last data transfer was handled by Channel 2 0001 = Last data transfer was handled by Channel 1 0000 = Last data transfer was handled by Channel 0										

0000 = Last data transfer was handled by Channel 0

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

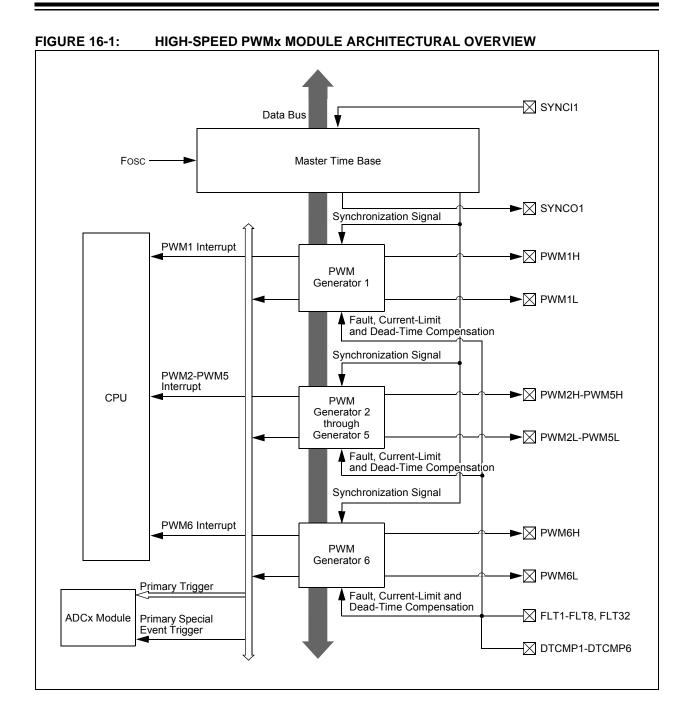
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation. For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.


A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC6R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC5R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8		Assign Input Ca 11-2 for input pin			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0		Assign Input Ca 11-2 for input pin			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
		Input tied to Vss					

REGISTER 11-6: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

NOTES:

REGISTER 16-6: STCON2: PWMx SECONDARY MASTER CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	—	P	CLKDIV<2:0>(1)		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					

R – Reauable bit		0 – Unimplemented bit, read	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

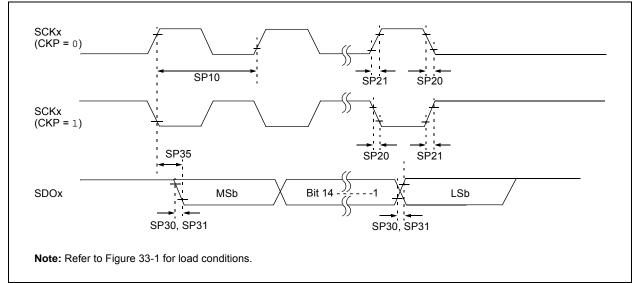
- 111 = Reserved
- 110 = Divide-by-64
- 101 = Divide-by-32
- 100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits ⁽³⁾
	11 = Trigger/event/interrupt generated on any change of the comparator output (while $CEVT = 0$)
	10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity):
	High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity):
	Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled.
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	11 = Inverting input of op amp/comparator connects to CxIN4- pin
	 10 = Inverting input of op amp/comparator connects to CxIN3- pin 01 = Inverting input of op amp/comparator connects to CxIN2- pin
	00 = Inverting input of op amp/comparator connects to CxIN2- pin
Note 1:	Inputs that are selected and not available will be tied to Vss. See the " Pin Diagrams " section for available

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - **3:** After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
53	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
<u></u>	a. a	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
60	0.5	SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
69 70	SE	SE	Ws,Wnd	Wnd = sign-extended Ws f = 0xFFFF	1	1 1	C,N,Z
10	SETM	SETM	f WREG	WREG = 0xFFFF	1	1	None None
		SETM		WREG = 0XFFFF Ws = 0XFFFF	1	1	None
71	SFTAC	SETM	Ws Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB


TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

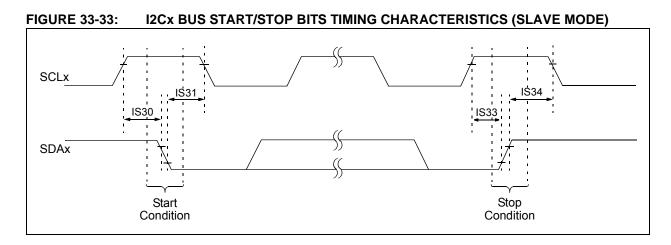

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 33-32:	SPI2 AND SPI3 MAXIMUM DATA/CLOCK RATE SUMMARY
---------------------	---

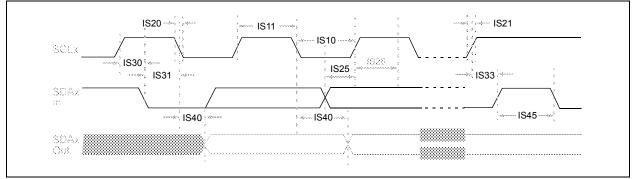

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 33-33	_	—	0,1	0,1	0,1	
9 MHz	—	Table 33-34	—	1	0,1	1	
9 MHz	—	Table 33-35	—	0	0,1	1	
15 MHz	—	—	Table 33-36	1	0	0	
11 MHz	_	_	Table 33-37	1	1	0	
15 MHz	_	_	Table 33-38	0	1	0	
11 MHz	_	_	Table 33-39	0	0	0	

FIGURE 33-15: SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

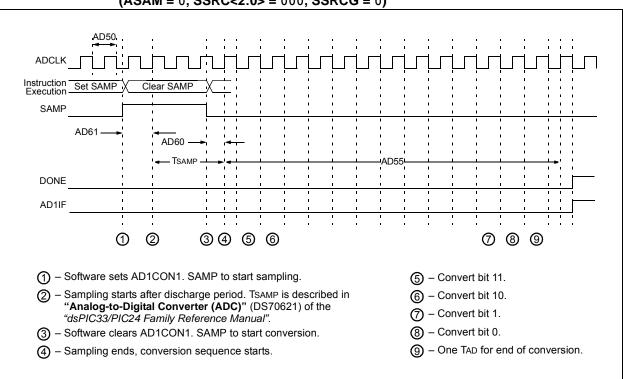

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min.	Тур.	Typ. Max. Units		Conditions			
ADC Accuracy (12-Bit Mode) – VREF-										
AD20a	Nr	Resolution	12 data bits			bits				
AD21a	INL	Integral Nonlinearity	-3	_	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD22a	DNL	Differential Nonlinearity	≥ 1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD23a	Gerr	Gain Error	-10	_	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD24a	EOFF	Offset Error	-5	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD25a	—	Monotonicity	_	_	—		Guaranteed			
Dynamic Performance (12-Bit Mode)										
AD30a	THD	Total Harmonic Distortion	_		-75	dB				
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB				
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB				
AD33a	Fnyq	Input Signal Bandwidth	_	_	250	kHz				
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits				

TABLE 33-57: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

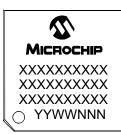

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 33-38: ADC1 CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

35.1 Package Marking Information (Continued)

64-Lead TQFP (10x10x1 mm)

Example


100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1 mm)

121-Lead TFBGA (10x10x1.1 mm)

Example

Example

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES: