

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	-
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm604t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0		
OA	OB	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC		
bit 15							bit 8		
R/W-0(²⁾ R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
IPL2 ⁽¹) IPL1 ⁽¹⁾	IPL0 ⁽¹⁾	RA	N	OV	Z	С		
bit 7							bit 0		
Legend:		C = Clearable	e bit						
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value	e at POR	'1' = Bit is set		x = Bit is unkr	iown				
bit 15	OA: Accumu	lator A Overflow	v Status bit						
	1 = Accumul 0 = Accumul	ator A has over ator A has not c	flowed overflowed						
bit 14	OB: Accumu	lator B Overflov	v Status bit						
	1 = Accumul 0 = Accumul	ator B has over	flowed						
bit 13	SA: Accumu	lator A Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾					
	1 = Accumul 0 = Accumul	ator A is satura ator A is not sat	ted or has bee	en saturated at	some time				
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ⁽³⁾					
	1 = Accumul	ator B is satura	ted or has bee	en saturated at	some time				
	0 = Accumul	ator B is not sat	turated						
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit				
	1 = Accumul	ilator A or B has overflowed							
	0 = Neither A	Accumulator A c	or B has overfl	owed					
bit 10	SAB: SA S	B Combined A	ccumulator 'Si	icky Status bit	1				
	1 = Accumul 0 = Neither A	ator A or B is sa Accumulator A c	aturated or nator national or na	s been saturate ed	ed at some time	•			
bit 9	DA: DO Loop	Active bit							
	1 = DO loop i	n progress							
	0 = DO loop i	not in progress							
bit 8	DC: MCU AL	U Half Carry/B	orrow bit						
	1 = A carry - 0	out from the 4th	low-order bit (for byte-sized d	ata) or 8th low-	order bit (for wo	rd-sized data)		
	0 = No carry data) of	-out from the 4 the result occur	th low-order b red	oit (for byte-size	ed data) or 8th	low-order bit (1	or word-sized		
Note 1:	The IPL<2:0> bits Level. The value i IPL<3> = 1.	are concatena n parentheses i	ted with the IF ndicates the I	PL<3> bit (COR PL, if IPL<3> =	CON<3>) to fo 1. User interru	rm the CPU Inte pts are disable	errupt Priority d when		

3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

FIGURE 4-6: DATA MEMORY MAP FOR 256-KBYTE DEVICES

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD ⁽¹⁾	PMPMD	CRCMD	_	QEI2MD	_	U3MD	_	I2C2MD	ADC2MD	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	U4MD	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	SPI3MD	0000
													DMA0MD					
	0760												DMA1MD	DTOMD				
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGND	_	_	_	0000
													DMA3MD					

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note 1:
 The RTCCMD bit is not available on 44-pin devices.

4.7 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGM3XX/6XX/7XX architecture uses a 24-bit-wide Program Space and a 16-bit-wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGM3XX/6XX/7XX devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-68: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0		PC<22:1>		0			
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxx					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1	xxx xxxx	xxxx xx					

FIGURE 4-16: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

4.7.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-17: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

dsPIC33EPXXXGM3XX/6XX/7XX

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2, 4, 6 AND 8)

15.1 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	ENFLTB
bit 15							bit 8

R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-10	OCTSEL<2:0>: Output Compare x Clock Select bits
	 111 = Peripheral clock (FP) 110 = Reserved 101 = PTGOx clock⁽²⁾ 100 = T1CLK is the clock source of OCx (only the synchronous clock is supported) 011 = T5CLK is the clock source of OCx 010 = T4CLK is the clock source of OCx 001 = T3CLK is the clock source of OCx 001 = T2CLK is the clock source of OCx 000 = T2CLK is the clock source of OCx
bit 9	Unimplemented: Read as '0'
bit 8	ENFLTB: Fault B Input Enable bit
	 1 = Output Compare x Fault B input (OCFB) is enabled 0 = Output Compare x Fault B input (OCFB) is disabled
bit 7	ENFLTA: Fault A Input Enable bit
	 1 = Output Compare x Fault A input (OCFA) is enabled 0 = Output Compare x Fault A input (OCFA) is disabled
bit 6	Unimplemented: Read as '0'
bit 5	OCFLTB: PWM Fault B Condition Status bit
	 1 = PWM Fault B condition on OCFB pin has occurred 0 = No PWM Fault B condition on OCFB pin has occurred
bit 4	OCFLTA: PWM Fault A Condition Status bit
	 1 = PWM Fault A condition on OCFA pin has occurred 0 = No PWM Fault A condition on OCFA pin has occurred
Note 1:	OCxR and OCxRS are double-buffered in PWM mode only.
2:	Each Output Compare x module (OCx) has one PTG clock source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module " for more information. PTGO4 = OC1, OC5 PTGO5 = OC2, OC6 PTGO6 = OC3, OC7 PTGO7 = OC4, OC8

REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDXH	LD<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INDXH	LD<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			

bit 15-0 INDXHLD<15:0>: Holding Register for Reading and Writing INDXxCNT bits

REGISTER 17-11: QEIXICH: QEIX INITIALIZATION/CAPTURE HIGH WORD REGISTER

Legend:							
bit 7							bit 0
			QEIIC	<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			QEIIC	<31:24>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 QEIIC<31:16>: High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: QEIx INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIIC	C<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEII	C<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set	et '0' = Bit is cleared x = E			x = Bit is unkr	nown	
L								

bit 15-0 QEIIC<15:0>: Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMERx HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			INTTM	R<31:24>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	INTTMR<23:16>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown			

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMERx LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	1R<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTI	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits
- 1111 = Fosc 1110 = OSCI pin 1101 = FRC oscillator 1100 = Reserved 1011 = Internal LPRC oscillator 1010 = Reserved 100x = Reserved 0111 = Reserved 0110 = Reserved 0101 = Reserved 0100 = CMP1 module⁽¹⁾ 0011 = CTED2 pin 0010 = CTED1 pin 0001 = OC1 module 0000 = IC1 module Unimplemented: Read as '0'

bit 1-0

Note 1: If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

REGISTER 23-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾ (CONTINUED)

bit 4	CSS20: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 3	CSS19: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 2	CSS18: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 1	CSS17: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan
bit 0	CSS16: ADCx Input Scan Selection bit 1 = Selects ANx for input scan 0 = Skips ANx for input scan

- **Note 1:** If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS<	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

REGISTER 23-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where 'x' = 0-15.

26.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Op Amp/ Comparator" (DS70000357), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices contain up to five comparators that can be configured in various ways. Comparators, CMP1, CMP2, CMP3 and CMP5, also have the option to be configured as op amps, with the output being brought to an external pin for gain/ filtering connections. As shown in Figure 26-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2, CMP3 and CMP5 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 26-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM

	REGISTER 26-6:	CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER
--	----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_	_	_						
bit 15	it 15									
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0			
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-7 bit 6-4	Dit 15-7 Unimplemented: Read as '0' Dit 6-4 CFSEL<2:0>: Comparator Filter Input Clock Select bits 111 = T5CLK ⁽¹⁾ 110 = T4CLK ⁽²⁾ 110 = T4CLK ⁽²⁾ T4CLK ⁽²⁾									
	100 = T2CLk 011 = SYNC 010 = SYNC 001 = Fosc ⁽⁴) 000 = FP ⁽⁴⁾	(2) O2 O1 ⁽³⁾								
bit 3	CFLTREN: C 1 = Digital filt 0 = Digital filt	comparator Filte er is enabled er is disabled	r Enable bit							
bit 2-0 CFDIV<2:0>: Comparator Filter Clock Divide Select bits 111 = Clock Divide 1:128 110 = Clock Divide 1:64 101 = Clock Divide 1:32 100 = Clock Divide 1:16 011 = Clock Divide 1:18 010 = Clock Divide 1:4 001 = Clock Divide 1:2 000 = Clock Divide 1:1										
Note 1: S	000 = Clock Divide 1:1 Note 1: See the Type C Timer Block Diagram (Figure 13-2).									

- See the Type B Timer Block Diagram (Figure 13-1).
 - 3: See the PWMx Module Register Interconnect Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

REGISTER 27-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽¹⁾	_		0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C},$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$	
		Output Low Voltage 8x Sink Driver Pins ⁽²⁾	_		0.4	V		
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽¹⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		Output High Voltage 8x Source Driver Pins ⁽²⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
DO20A	Von1	Output High Voltage	1.5		_	V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		4x Source Driver Pills, 7	2.0	_	_		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			3.0	_	_		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
		Output High Voltage	1.5	_	_	V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			2.0	_	—		$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
			3.0		—		$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	

TABLE 33-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3>
 For 64-pin devices: RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7>
 For 100-pin devices: RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 33-12: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Param No. Symbol Characteristic		Min. ⁽¹⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.7		2.95	V	V _{DD} (Note 2, Note 3)
PO10	VPOR	POR Event on VDD Transition High-to-Low	1.75	_	1.95	V	(Note 2)

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The VBOR specification is relative to VDD.

3: The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized.

FIGURE 33-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 33-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operat (unless otherwis Operating temper	ing Cor e state ature	nditions d) -40°C ≤ -40°C ≤	: 3.0V to 3.6V TA ≤ +85°C for Indu TA ≤ +125°C for Ex	ıstrial tended
Param. No.	Symbol	Characteristics ⁽¹⁾	stics ⁽¹⁾ Min. Max. Units Conditions				nditions
IC10	TccL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15	
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15	N = Prescale value (1, 4, 16)
IC15	TccP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50		ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

http://www.microchip.com/packaging D А В Ν 2 NOTE 1 -Е (DATUM B) (DATUM A) 0.20 C 2Х **TOP VIEW** 0.20 С // 0.10 C A1 С SEATING 000000000 ௱௱ PLANE A3 \square 0.08 C SIDE VIEW ⊕ 0.10∭ C A в D2 ⊕ 0.10∭ C A B E2 NOTE 1 2 1 Ν 44 X b 0.07MCAB |e| Φ 0.05M С **BOTTOM VIEW**

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

dsPIC33EPXXXGM3XX/6XX/7XX

NOTES: