

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm706-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN49	Ι	Analog	No	Analog Input Channels 0-49.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function
CLKO	0	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	I	ST/ CMOS	No	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0	_	No	32.768 kHz low-power oscillator crystal output.
IC1-IC8	I	ST	Yes	Input Capture Inputs 1 through 8.
OCFA OCFB OC1-OC8	 	ST ST	Yes No Yes	Output Compare Fault A input (for compare channels). Output Compare Fault B input (for compare channels). Output Compare 1 through 8.
INT0		ST	No	External Interrupt 0.
INT1	l i	ST	Yes	External Interrupt 1.
INT2	1	ST	Yes	External Interrupt 2.
INT3	I.	ST	No	External Interrupt 3.
INT4	Ι	ST	No	External Interrupt 4.
RA0-RA4, RA7-RA12, RA14-RA15	I/O	ST	Yes	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	Yes	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	Yes	PORTC is a bidirectional I/O port.
RD1-RD6, RD8, RD12-RD15	I/O	ST	Yes	PORTD is a bidirectional I/O port.
RE0-RE1, RE8-RE9, RE12-RE15	I/O	ST	Yes	PORTE is a bidirectional I/O port.
RF0-RF1, RF4-RF7, RF9-RF10, RF12-RF13	I/O	ST	No	PORTF is a bidirectional I/O port.
RG0-RG3, RG6-RG15	I/O	ST	Yes	PORTG is a bidirectional I/O port.
T1CK	Ι	ST	No	Timer1 external clock input.
T2CK		ST	Yes	Timer2 external clock input.
T3CK		ST	No	Timer3 external clock input.
T4CK T5CK		ST ST	No No	Timer4 external clock input.
T6CK		ST	NO	Timer5 external clock input. Timer6 external clock input.
T7CK		ST	No	Timer7 external clock input.
T8CK	l i	ST	No	Timer8 external clock input.
T9CK	i	ST	No	Timer9 external clock input.
Legend: CMOS = CM ST = Schmit	tt Trigg	mpatible er input v	vith CN	or output Analog = Analog input P = Power IOS levels O = Output I = Input
PPS = Perip				TTL = TTL input buffer es. For more information. see the " Pin Diagrams " section for pin

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

2: AVDD must be connected at all times.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKI	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	oit	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

bit 15-8 Unimplemented: Read as '0'

-n = Value at POR

bit 7-0 NVMKEY<7:0>: NVM Key Register (write-only) bits

'1' = Bit is set

REGISTER 5-5: NVMSRCADRH: NONVOLATILE DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMSRCAD	DRH<23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMSRCADRH<23:16>: Nonvolatile Data Memory Upper Address bits

x = Bit is unknown

	Vector	IRQ		Interrupt Bit Location			
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority	
SPI3E – SPI3 Error	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>	
SPI3 – SPI3 Transfer Done	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>	
Reserved	100-101	92-93	0x0000CC-0x0000CE	_	_	—	
PWM1 – PWM Generator 1	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
PWM2 – PWM Generator 2	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
PWM3 – PWM Generator 3	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
PWM4 – PWM Generator 4	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>	
PWM5 – PWM Generator 5	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>	
PWM6 – PWM Generator 6	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>	
Reserved	108-149	100-141	0x0000DC-0x00012E	_	_	—	
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>	
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>	
Reserved	152	144	0x000134	_	—	—	
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>	
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>	
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>	
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>	
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>	
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>	
Reserved	159-245	151-245	0x000142-0x0001FE	_	_	_	
	Lowe	est Natura	Order Priority				

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

2: This interrupt source is not available on 44-pin devices.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC6R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC5R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8		Assign Input Ca 11-2 for input pin			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0		Assign Input Ca 11-2 for input pin			onding RPn P	in bits	
	1111100 =	Input tied to RPI	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
		Input tied to Vss					

REGISTER 11-6: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = Capture timer is unsynchronized
 - 11110 = Capture timer is unsynchronized
 - 11101 = Capture timer is unsynchronized
 - 11100 = CTMU trigger is the source for the capture timer synchronization
 - 11011 = ADC1 interrupt is the source for the capture timer synchronization⁽⁵⁾
 - 11010 = Analog Comparator 3 is the source for the capture timer synchronization⁽⁵⁾
 - 11001 = Analog Comparator 2 is the source for the capture timer synchronization⁽⁵⁾
 - 11000 = Analog Comparator 1 is the source for the capture timer synchronization⁽⁵⁾
 - 10111 = Input Capture 8 interrupt is the source for the capture timer synchronization
 - 10110 = Input Capture 7 interrupt is the source for the capture timer synchronization 10101 = Input Capture 6 interrupt is the source for the capture timer synchronization
 - 10100 = Input Capture 5 interrupt is the source for the capture timer synchronization
 - 10011 = Input Capture 4 interrupt is the source for the capture timer synchronization
 - 10010 = Input Capture 3 interrupt is the source for the capture timer synchronization
 - 10001 = Input Capture 2 interrupt is the source for the capture timer synchronization
 - 10000 = Input Capture 1 interrupt is the source for the capture timer synchronization
 - 01111 = GP Timer5 is the source for the capture timer synchronization
 - 01110 = GP Timer4 is the source for the capture timer synchronization
 - 01101 = GP Timer3 is the source for the capture timer synchronization 01100 = GP Timer2 is the source for the capture timer synchronization
 - 01100 = GP Timer2 is the source for the capture timer synchronization 01011 = GP Timer1 is the source for the capture timer synchronization
 - 01011 = OF Time is the source for the capture time synchronization (6)
 - 01001 = Capture timer is unsynchronized
 - 01000 = Output Compare 8 is the source for the capture timer synchronization
 - 00111 = Output Compare 7 is the source for the capture timer synchronization
 - 00110 = Output Compare 6 is the source for the capture timer synchronization
 - 00101 = Output Compare 5 is the source for the capture timer synchronization
 - 00100 = Output Compare 4 is the source for the capture timer synchronization
 - 00011 = Output Compare 3 is the source for the capture timer synchronization
 - 00010 = Output Compare 2 is the source for the capture timer synchronization
 - 00001 = Output Compare 1 is the source for the capture timer synchronization
 - 00000 = Capture timer is unsynchronized
- **Note 1:** The IC32 bit in both the Odd and Even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x module (ICx) has one PTG input source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1, IC5
 PTGO9 = IC2, IC6
 PTGO10 = IC3, IC7
 PTGO11 = IC4, IC8

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXGM3XX/6XX/7XX devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring: PWMLOCK = 0.

To gain write access to these locked registers, the user application must write two consecutive values of 0xABCD and 0x4321 to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWM1 WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

-	-	high externally in order to clear and disable the fault ter requires unlock sequence
mov #0xabc mov #0x432 mov #0x000 mov w10, F mov w11, F mov w0, FC	21, w11 00, w0 PWMKEY PWMKEY	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
		larity using the IOCON1 register er requires unlock sequence
<pre>mov #0xabc mov #0x432 mov #0xF00 mov w10, F mov w11, F mov w0, IC</pre>	21, w11 20, w0 PWMKEY PWMKEY	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN			
bit 15							bit	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL	
bit 7		20					bit	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15		H Rising Edge	Triggor Enabl	o hit				
JIL 15		• •			Blanking count	ter		
				sing edge of PV				
bit 14	PHF: PWMxH	H Falling Edge	Trigger Enab	le bit				
					e Blanking coun	ter		
	0	0 0	0	Illing edge of P	WMxH			
bit 13		Rising Edge						
				sing edge of PV	Blanking count	er		
bit 12		_uge blanking			VIVIAE			
					Blanking count	ter		
	Ų	0	00	alling edge of P	Ų			
bit 11		•	• •	anking Enable I				
				he selected Fail to the selected				
bit 10	CLLEBEN: C	Current-Limit Le	ading-Edge E	Blanking Enable	e bit			
				he selected cur to the selected	rrent-limit input I current-limit inj	put		
bit 9-6	Unimplemen	ted: Read as '	0'					
bit 5	BCH: Blankin	ng in Selected I	Blanking Sign	al High Enable	bit ⁽¹⁾			
		nking (of currer			nals) when seled	cted blanking s	ignal is high	
bit 4	BCL: Blankin	g in Selected E	Blanking Signa	al Low Enable b	_{Dit} (1)			
		nking (of currer			nals) when seled	cted blanking s	ignal is low	
bit 3	BPHH: Blank	3PHH: Blanking in PWMxH High Enable bit						
		nking (of currer			nals) when PWN	/IxH output is h	igh	
bit 2	BPHL: Blanki	ing in PWMxH	Low Enable b	pit				
		nking (of currer			nals) when PWN	/IxH output is lo	W	
bit 1	BPLH: Blanki	ing in PWMxL	High Enable I	oit				
		nking (of currer			als) when PWN	/lxL output is hi	gh	
	0 = No blanki	ing when PWM	xL output is h	igh				
bit 0			-	-				

REGISTER 16-22: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER x

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

REGISTER 17-19: INTxHLDH: INTERVAL TIMERX HOLD HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	ue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown		
•							

bit 15-0 INTHLD<31:16>: Holding Register for Reading and Writing INTxTMRH bits

REGISTER 17-20: INTxHLDL: INTERVAL TIMERx HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	.D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 INTHLD<15:0>: Holding Register for Reading and Writing INTxTMRL bits

23.2 ADCx Helpful Tips

- 1. The SMPIx control bits in the ADxCON2 registers:
 - a) Determine when the ADCx interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the ADxCON2 register is set to '1', this determines when the ADCx analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADCx buffer used in this mode. The ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using the DMA peripheral.
- When the DMA module is disabled (ADDMAEN = 0), the ADCx has 16 result buffers. ADCx conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1.c) above. There is no relationship between the ANx input being measured and which ADCx buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.

- 3. When the DMA module is enabled (ADDMAEN = 1), the ADCx module has only 1 ADCx result buffer (i.e., ADC1BUF0) per ADCx peripheral and the ADCx conversion result must be read, either by the CPU or DMA Controller, before the next ADCx conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (ADxCON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADCx. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (ADxCON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for AN0, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADCx block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "dsPIC33/PIC24 Family Reference Manual", "Analog-to-Digital Converter (ADC)" (DS70621)

25.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Peripheral Trigger Generator (PTG)" (DS70669), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

25.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex, high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "steps", that the user writes to the PTG Queue register (PTGQUE0-PTQUE15), which performs operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple Clock Sources
- Two 16-Bit General Purpose Timers
- Two 16-Bit General Limit Counters
- Configurable for Rising or Falling Edge Triggering
- Generates Processor Interrupts to Include:
 - Four configurable processor interrupts
 - Interrupt on a step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to Receive Trigger Signals from these Peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to Trigger or Synchronize to these Peripherals:
- Watchdog Timer
- Output Compare
- Input Capture
- ADC
- PWM
- Op Amp/Comparator

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	—	PTGWDT2	PTGWDT1	PTGWDT0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
				a			
bit 15-13		>: Select PTG	Module Clock	Source bits			
	111 = Reserv 110 = Reserv						
		odule clock so	urce will be T3	CLK			
		odule clock so					
		odule clock so					
		odule clock so odule clock so					
		odule clock so					
bit 12-8	PTGDIV<4:0>	-: PTG Module	Clock Presca	ler (divider) bi	ts		
	11111 = Divid 11110 = Divid						
	•						
	•						
	00001 = Divic 00000 = Divic	•					
bit 7-4	PTGPWD<3:0	0>: PTG Trigge	er Output Pulse	e-Width bits			
		gger outputs ar					
	1110 = All trig	gger outputs ar	e 15 PIG cloc	k cycles wide			
	•						
	•						
		gger outputs ar gger outputs ar					
bit 3	Unimplement	ted: Read as '	0'				
bit 2-0	PTGWDT<2:0	D>: Select PTO	Watchdog Tir	mer Time-out (Count Value bits	3	
		log Timer will t					
		log Timer will t log Timer will t					
		log Timer will t					
		log Timer will t					
	010 = Watchd	loa Timer will t	ime-out after 1	6 PTG clocks			
	001 = Watchd	log Timer will t	ime-out after 8				

REGISTER 25-2: PTGCON: PTG CONTROL REGISTER

REGISTER 25-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	1 = Generates clock pulse when the broadcast command is executed
	0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
Note 1:	This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and

- PTGSTRT = 1).
- 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 27-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

29.2 Programmable CRC Control Registers

REGISTER 29-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8

R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—
bit 7							bit 0

Legend:				
R = Readable bit	eadable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	CRCEN: CRC Enable bit
	 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, other SFRs are not reset
bit 14	Unimplemented: Read as '0'
bit 13	CSIDL: CRC Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12-8	VWORD<4:0>: Valid Word Pointer Value bits
	Indicates the number of valid words in the FIFO; has a maximum value of 8 when PLEN<4:0> > 7 or 16 when PLEN<4:0> \leq 7
bit 7	CRCFUL: CRC FIFO Full bit
	1 = FIFO is full 0 = FIFO is not full
bit 6	CRCMPT: CRC FIFO Empty Bit
	1 = FIFO is empty0 = FIFO is not empty
bit 5	CRCISEL: CRC Interrupt Selection bit
	 1 = Interrupt on FIFO empty; final word of data is still shifting through CRC 0 = Interrupt on shift complete and CRCWDAT results are ready
bit 4	CRCGO: CRC Start bit
	 1 = Start CRC serial shifter 0 = CRC serial shifter is turned off
bit 3	LENDIAN: Data Word Little-Endian Configuration bit
	 1 = Data word is shifted into the CRC starting with the LSb (little endian) 0 = Data word is shifted into the CRC starting with the MSb (big endian)
bit 2-0	Unimplemented: Read as '0'

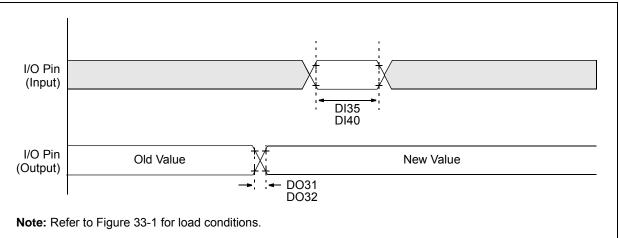

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
72	SL	SL f		f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

dsPIC33EPXXXGM3XX/6XX/7XX

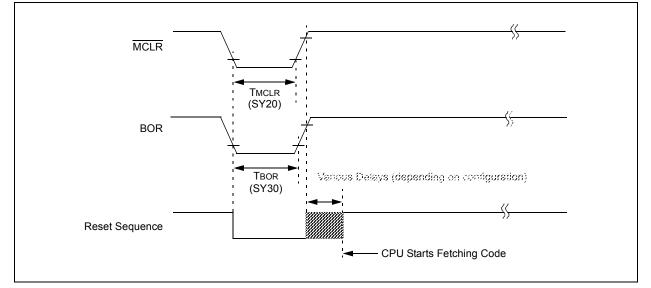


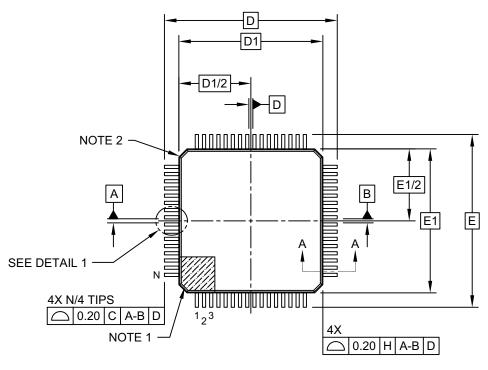
TABLE 33-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time		5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	_	_	Тсү	

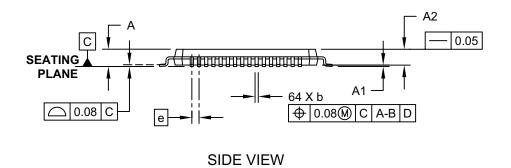
Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 33-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
ADC Accuracy (12-Bit Mode) – VREF-										
AD20a	Nr	Resolution	12 data bits			bits				
AD21a	INL	Integral Nonlinearity	-3	_	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD22a	DNL	Differential Nonlinearity	≥ 1		< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD23a	Gerr	Gain Error	-10	_	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD24a	EOFF	Offset Error	-5	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)			
AD25a	—	Monotonicity	_	_	—		Guaranteed			
Dynamic Performance (12-Bit Mode)										
AD30a	THD	Total Harmonic Distortion	_		-75	dB				
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB				
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB				
AD33a	Fnyq	Input Signal Bandwidth	_	_	250	kHz				
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits				

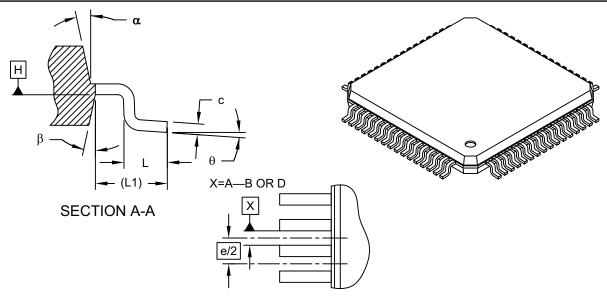

TABLE 33-57: ADCx MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.


2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-085C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Leads	Ν	64				
Lead Pitch	е	0.50 BSC				
Overall Height	Α	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0°	3.5°	7°		
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09	-	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

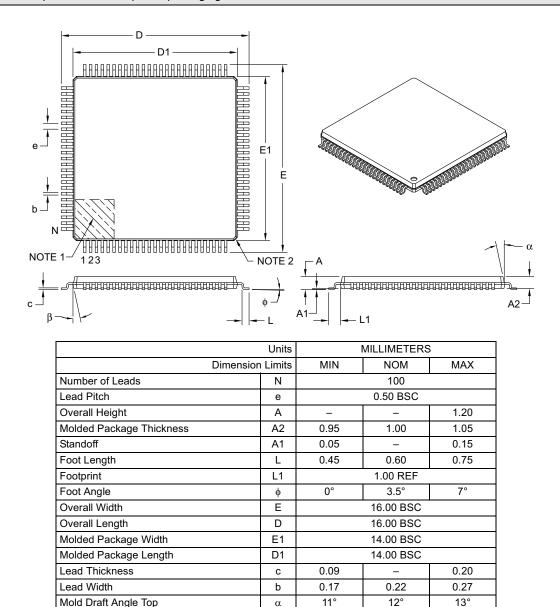
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Mold Draft Angle Bottom

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

β

11°

12°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

13°