

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I2S, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (170K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 30x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep512gm706-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-25: CAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾ (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF11EID	046E								E	ID<15:0>								xxxx
C1RXF12SID	0470	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	—	EID17	EID16	xxxx
C1RXF12EID	0472								E	ID<15:0>								xxxx
C1RXF13SID	0474	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	—	EID17	EID16	xxxx
C1RXF13EID	0476								E	ID<15:0>						_		xxxx
C1RXF14SID	0478	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxxx
C1RXF14EID	047A								E	ID<15:0>						_		xxxx
C1RXF15SID	047C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0		EXIDE	—	EID17	EID16	xxxx
C1RXF15EID	047E								E	ID<15:0>								xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-26: CAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	OPMODE2	OPMODE1	OPMODE0	_	CANCAP	_	_	WIN	0480
C2CTRL2	0502	_	—	—	_	_	_	—	—	—	—	—			DNCNT<4:0>			0000
C2VEC	0504	_	_	_	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0	0040
C2FCTRL	0506	DMABS2	DMABS1	DMABS0	_	_		_	_	_	_	_	FSA4	FSA3	FSA2	FSA1	FSA0	0000
C2FIFO	0508	_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0	_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0	0000
C2INTF	050A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	—	_	-	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E	TERRCNT7	TERRCNT6	TERRCNT5	TERRCNT4	TERRCNT3	TERRCNT2	TERRCNT1	TERRCNT0	RERRCNT7	RERRCNT6	RERRCNT5	RERRCNT4	RERRCNT3	RERRCNT2	RERRCNT1	RERRCNT0	0000
C2CFG1	0510	_	_	_	—	_	-	—	—	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	0000
C2CFG2	0512	—	WAKFIL	—	—	-	SEG2PH2	SEG2PH1	SEG2PH0	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0	0000
C2FEN1	0514								FLTE	N<15:0>								FFFF
C2FMSKSEL1	0518	F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0	F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0	0000
C2FMSKSEL2	051A	F15MSK1	F15MSK0	F14MSK1	F14MSK0	F13MSK1	F13MSK0	F12MSK1	F12MSK0	F11MSK1	F11MSK0	F10MSK1	F10MSK0	F9MSK1	F9MSK0	F8MSK1	F8MSK0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-28:	CAN2 REGISTER MAP WHEN WIN	(C1CTRL<0>) = 1 FOR	dsPIC33EPXXXGM60X/7XX DEVICES ⁽¹⁾	(CONTINUED)
--------------------	----------------------------	---------------------	--	-------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	—	EXIDE	—	EID17	EID16	xxxx
C2RXF11EID	056E								EI	D<15:0>								xxxx
C2RXF12SID	0570	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C2RXF12EID	0572								EI	D<15:0>								xxxx
C2RXF13SID	0574	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C2RXF13EID	0576								EI	D<15:0>								xxxx
C2RXF14SID	0578	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C2RXF14EID	057A								EI	D<15:0>								xxxx
C2RXF15SID	057C	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1	SID0	_	MIDE	_	EID17	EID16	xxxx
C2RXF15EID	057E								EI	D<15:0>								xxxx

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-29: PROGRAMMABLE CRC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 15 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										All Resets					
CRCCON1	0640	CRCEN	EN - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN 0											0000				
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644		X<15:1> — 00										0000					
CRCXORH	0646								X<31	:16>								0000
CRCDATL	0648							CRC [Data Input Lo	w Word Re	egister							0000
CRCDATH	064A							CRC E	ata Input Hi	gh Word Re	egister							0000
CRCWDATL	064C		CRC Result Low Word Register 0000											0000				
CRCWDATH	064E		CRC Result High Word Register 0000											0000				

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

4.3.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	То	protec	ct	agains	misa	stack				
	acc	esses,	W	/15<0>	is	fixed	to	'0'	by	the
	har	dware.								

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGM3XX/6XX/7XX devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-13 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-13. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain the Software Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a 'C' development environment

FIGURE 4-13: C.

CALL STACK FRAME

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-66 form the basis of the addressing modes optimized to support the specific features of the individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	_	_	_		—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
	_	_	—		LSTCI	H<3:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplement	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	Last DMA Co	ntroller Chan	nel Active Statu	us bits		
	1111 = No DM 1110 = Reser	MA transfer has ∿ed	s occurred sir	nce system Res	set		
	•						
	•						
	•						
	0100 = Reser 0011 = Last d 0010 = Last d 0001 = Last d	ved lata transfer wa lata transfer wa lata transfer wa	as handled by as handled by as handled by	Channel 3 Channel 2 Channel 1			

0000 = Last data transfer was handled by Channel 0

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit (read/clear by application) ⁽⁵⁾
	1 = FSCM has detected clock failure0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enables Secondary Oscillator (SOSC)0 = Disables Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits 0 = Oscillator switch is complete

- **Note 1:** Writes to this register require an unlock sequence. Refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS70580), available from the Microchip web site for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This register resets only on a Power-on Reset (POR).
 - 4: Secondary Oscillator (SOSC) selection is valid on 64-pin and 100-pin devices, and defaults to FRC/N on 44-pin devices.
 - 5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
T9MD	T8MD	T7MD	T6MD		CMPMD	RTCCMD ⁽¹⁾	PMPMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCMD	DACMD	QEI2MD	PWM2MD	U3MD	I2C3MD	I2C2MD	ADC2MD
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
1.1.45			. I I. M				
DIT 15	19MD: Timers	9 Module Disal					
	1 = 11mer9 m 0 = Timer9 m	odule is disable	ea ed				
bit 13	T8MD: Timer	8 Module Disal	ole bit				
	1 = Timer8 m	odule is disable	ed				
	0 = Timer8 m	odule is enable	ed				
bit 14	T7MD: Timer	7 Module Disal	ole bit				
	1 = Timer7 mer7	odule is disable	ed				
	0 = 1 imer 7 m	odule is enable	ed				
bit 12	16MD: Timer	6 Module Disal	ole bit				
	1 = 1 mero m 0 = Timer6 m	odule is disable	ea ed				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10	CMPMD: Cor	nparator Modu	le Disable bit				
	1 = Comparat	tor module is d	isabled				
	0 = Comparat	tor module is e	nabled				
bit 9	RTCCMD: RT	FCC Module Di	sable bit ⁽¹⁾				
	1 = RTCC mc	dule is disable	d d				
hit 0			u bla bit				
DILO	1 = PMP mod	P MOUUIE DISa Iule is disabled					
	$0 = PMP \mod 1$	lule is enabled					
bit 7	CRCMD: CR	C Module Disa	ble bit				
	1 = CRC mod	lule is disabled					
	$0 = CRC \mod$	lule is enabled					
bit 6	DACMD: DAG	C Module Disa	ble bit				
	$1 = DAC \mod 0$	lule is disabled					
bit 5		12 Module Disa	ble hit				
bit 5	1 = 0 E I 2 moo	fule is disabled					
	0 = QEI2 mod	dule is enabled	•				
bit 4	PWM2MD: P	WM2 Module E	Disable bit				
	1 = PWM2 mo	odule is disable	ed				
	0 = PWM2 mo	odule is enable	ed				

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

Note 1: The RTCCMD bit is not available on 44-pin devices.

|--|

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				T2CKR<6:0>	>		
bit 7	·						bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimpleme	nted: Read as '	0'				
bit 6-0	T2CKR<6:0>	-: Assign Timer	2 External Clo	ock (T2CK) to t	he Correspondi	ng RPn pin bits	;
	(see Table 12	1-2 for input pin	selection num	nbers)			
	1111100 = 	nput tied to RPI	124				
	•						
	•						

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2013-2014 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK3R<6:0>	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI3R<6:0>			
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	SCK3R<6:0	0>: Assign SPI3	Clock Input (SCK3) to the Co	orresponding l	RPn/RPIn Pin bi	ts
	(see Table	11-2 for input pin	selection nu	mbers)			
	1111111 =	Input tied to RP	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	6				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	SDI3R<6:0	>: Assign SPI3 E	ata Input (SI	DI3) to the Corre	esponding RP	n/RPIn Pin bits	
	(see lable	11-2 for input pin	selection nui	mbers)			
	•	Input tied to RP	124				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	3				

REGISTER 11-23: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

REGISTER 11-24: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	-	—	—	—	—	
bit 15						•	bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_				SS3R<6:0>				
bit 7	·						bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Unimplemer	ted: Read as ')'					
bit 6-0	bit 6-0 SS3R<6:0>: Assign SPI3 Slave Select Input (SS3) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)							
1111111 = Input tied to RP124								
	•							

• • 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

16.0 HIGH-SPEED PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Speed PWM" (DS70645), which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices support a dedicated Pulse-Width Modulation (PWM) module with up to 12 outputs.

The high-speed PWMx module consists of the following major features:

- · Six PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and a frequency resolution of 7.14 ns
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 7.14 ns.

The high-speed PWMx module contains up to six PWM generators. Each PWMx generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADCx module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADCx module, based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 input pins that utilize PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs, which include FLT1 and FLT2. The inputs are remappable using the PPS feature. FLT3 is available on 44-pin, 64-pin and 100-pin packages; FLT4 through FLT8 are available on specific pins on 64-pin and 100-pin packages, and FLT32, which has been implemented with Class B safety features, and is available on a fixed pin on all devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled high externally or the internal pull-up resistor in the CNPUx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCONx<1:0>), regardless of the state of FLT32.

REGISTER 16-7: STPER: PWMx SECONDARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			STPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			STPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 STPER<15:0>: PWMx Secondary Master Time Base (PMTMR) Period Value bits

REGISTER 16-8: SSEVTCMP: PWMx SECONDARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTC	CMP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 SSEVTCMP<15:0>: PWMx Secondary Special Event Compare Count Value bits

REGISTER 16-14: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is		x = Bit is unkr	nown	

bit 15-0 **PHASEx<15:0>:** Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

- Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs.
 2: If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent Time Base Period Value for PWMxH and PWMxL.

REGISTER 16-15: SPHASEx: PWMx SECONDARY PHASE-SHIFT REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

bit 15-0 **SPHASEx<15:0>:** Secondary Phase Offset for PWMxL Output Pin bits (used in Independent PWM mode only)

'1' = Bit is set

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation:

Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), SPHASEx<15:0> = Not used.

'0' = Bit is cleared

- True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11), SPHASEx<15:0> = Phase-Shift Value for PWMxL only.
- 2: If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), SPHASEx<15:0> = Not used.
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11), SPHASEx<15:0> = Independent Time Base Period Value for PWMxL only.

-n = Value at POR

x = Bit is unknown

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS2	DMABS1	DMABS0	_			_	_
bit 15		<u>.</u>			•		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			FSA4	FSA3	FSA2	FSA1	FSA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13 bit 12-5 bit 4-0	DMABS<2:0>: DMA Buffer Size bits 111 = Reserved 110 = 32 buffers in RAM 101 = 24 buffers in RAM 100 = 16 buffers in RAM 011 = 12 buffers in RAM 010 = 8 buffers in RAM 001 = 6 buffers in RAM 000 = 4 buffers in RAM 000 = 4 buffers in RAM Unimplemented: Read as '0' FSA<4:0>: FIFO Area Starts with Buffer bits 1111 = Receive Buffer RB31 1110 = Receive Buffer RB30 00001 = Transmit/Receive Buffer TRB1 0000 = Transmit/Receive Buffer TRB1						

REGISTER 21-4: CxFCTRL: CANx FIFO CONTROL REGISTER

REGISTER 21-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	—	EXIDE		EID17	EID16	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
bit 15-5 SID<10:0>: Standard Identifier bits								
	1 = Message	address bit, SI	Dx, must be '	1' to match filte	er			
	0 = Message	address bit, SI	Dx, must be '	0' to match filte	er			
bit 4	Unimplemen	ted: Read as '	כ'					
bit 3	EXIDE: Exten	ded Identifier E	Enable bit					
	If MIDE = 1:							
	1 = Matches o	only messages	with Extende	d Identifier add	Iresses			
		only messages	with Standard	a identifier add	resses			
	$\frac{\text{If MIDE} = 0}{\text{Ignores EXID}}$	E hit						
hit 2	Unimplement	ted: Read as 'r	ר י					
bit 1 0		Extended Iden	J tifior hito					
DIL 1-0	EID<17:10>:			1 ² to motob filto	-			
	$\perp = \text{INESSAGE}$	address bit, El	Dx, must be '.	1 to match filte	51 Ar			
	0 = Message address bit, EIDX, must be "0" to match filter							

REGISTER 21-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-20: CxRXMnSID: CANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3		
bit 15	•	•	•				bit 8		
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x		
SID2	SID1	SID0		MIDE	—	EID17	EID16		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR (1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-5	SID<10:0>: S	tandard Identif	ier bits						
	1 = Includes b	oit, SIDx, in filte	er comparisor	1					
	0 = Bit, SIDx,	is a don't care	in filter comp	arison					
bit 4	Unimplemen	ted: Read as '	0'						
bit 3	MIDE: Identifi	er Receive Mo	de bit						
	1 = Matches	only message	types (standa	rd or extended	address) that c	orrespond to th	e EXIDE bit in		
	the filter								
	0 = Matches	either standard	or extended a	address messag	ge if filters match) 200 SIDV/EIDV))		
hit O		ted Dood on $($			$J \square D X) = (101000000000000000000000000000000000$)		
	Unimplemen		0						
bit 1-0	EID<17:16>:	Extended Iden	tifier bits						
	1 = Includes bit, EIDx, in filter comparison								
	0 = Bit, EIDx, is a don't care in filter comparison								

REGISTER 21-21: CxRXMnEID: CANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EIC)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

REGISTER 25-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	1 = Generates clock pulse when the broadcast command is executed
	0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
Note 1:	This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and

- PTGSTRT = 1).
- 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 28-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER (MASTER MODES ONLY)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8
bit 15	•	•		·		•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADDR7	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0
bit 7	•	•		·		•	bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	Reset	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15 bit 14	CS2: Chip Set If PMCON<7: 1 = Chip Sete 0 = Chip Sete If PMCON<7: Bit functions a CS1: Chip Sete If PMCON<7: 1 = Chip Sete 0 = Chip Sete If PMCON<7: Bit functions a	elect 2 bit $6 \ge 10 \text{ or } 01$: $2 \ge 10 \text{ or } 01$: $2 \ge 10 \text{ or } 00$: $3 \ge 400 \text{ R}^3$. $4 \ge 10 \text{ or } 00$: $6 \ge 10 \text{ or } 00$: $6 \ge 10$: $2 \ge 10 \text{ or } 00$: $6 \ge 11 \text{ or } 0x$: $6 \ge 11 \text{ or } 0x$: $3 \ge 400 \text{ R}^4$.					
bit 13-0	ADDR<13:0>	: Destination A	ddress bits				

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two Data Buffer registers.

2: This register is not available on 44-pin devices.

FIGURE 33-19: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

dsPIC33EPXXXGM3XX/6XX/7XX

F

103
104
104
104
103
411

G

Cetting Started with 16-Bit DSCs	21
Connection Requirements	
CPU Logic Filter Capacitor Connection (VCAP)	22
Decoupling Capacitors	21
External Oscillator Pins	23
ICSP Pins	23
Master Clear (MCLR) Pin	22
Oscillator Value Conditions on Device Start-up	24
Unused I/Os	24

Н

High-Speed PWM	. 229
Control Registers	. 233
Faults	. 229
High-Temperature Electrical Characteristics	. 499
Absolute Maximum Ratings	. 499
High-Voltage Detect (HVD)	. 173

L

I/O Ports	
Configuring Analog/Digital Port Pins	
Helpful Tips	
Open-Drain Configuration	
Parallel I/O (PIO)	
Write/Read Timing	
In-Circuit Debugger	418
In-Circuit Emulation	411
In-Circuit Serial Programming (ICSP)	411, 418
Input Capture	219
Control Registers	220
Input Change Notification (ICN)	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	
MAC Instructions	97
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	97
Instruction Set	
Instruction Set Overview	
Instruction Set Overview Summary	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C)	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator	422 419 101 281 283
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT	422 419 101 281 283 417
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address.	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers IECx	
Instruction Set OverviewSummary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers IECx IFSx	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers IECx IFSx INTCON1	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers IECx IFSx INTCON1 INTCON2	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers IECx IFSx INTCON1 INTCON2 INTCON3	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers IECx IFSx INTCON1 INTCON2 INTCON3 INTCON4	
Instruction Set Overview Summary Interfacing Program and Data Memory Spaces Inter-Integrated Circuit (I ² C) Control Registers Internal LPRC Oscillator Use with WDT Internet Address Interrupt Controller Control and Status Registers IECx IFSx INTCON1 INTCON2 INTCON3 INTCON4 INTTREG	

Reset Sequence	115
Interrupt Vector	
Details (table)	117
Interrupt Vector Table (IVT)	115
Interrupt Vector Table (table)	116
J	
JTAG Boundary Scan Interface	411

Μ

Memory Maps	
EDS	. 94
Memory Organization	. 37
Microchip Internet Web Site	536
Modulo Addressing	. 98
Applicability	. 99
Operation Example	. 98
Start and End Address	. 98
W Address Register Selection	. 98
MPLAB Assembler, Linker, Librarian	430
MPLAB ICD 3 In-Circuit Debugger	431
MPLAB PM3 Device Programmer	431
MPLAB REAL ICE In-Circuit Emulator System	431
MPLAB X Integrated Development	
Environment Software	429
MPLAB X SIM Software Simulator	431
MPLIB Object Librarian	430
MPLINK Object Linker	430

0

Op Amp	
Application Considerations	368
Configuration A	368
Configuration B	
Op Amp/Comparator	
Control Registers	370
Resources	
Oscillator Configuration	143
CPU Clocking System	144
Output Compare	223
Control Registers	224

Ρ

Packaging		507
Details	517,	518
Marking	507,	508
Parallel Master Port (PMP)		395
Peripheral Module Disable (PMD)		155
Peripheral Pin Select (PPS)		165
Input Sources, Maps Input to Function		167
Output Selection for Remappable Pins		172
Peripheral Trigger Generator (PTG) Module		349
PICkit 3 In-Circuit Debugger/Programmer		431
Pinout I/O Descriptions (table)		. 16
PMP		
Control Registers		396
Power-Saving Features		153
Clock Frequency and Switching		153
Instruction-Based Modes		153
ldle		154
Sleep		154
Interrupts Coincident with Power Save		
Instructions		154
PPS		
Control Registers		175
-		

© 2013-2014 Microchip Technology Inc.

NOTES: